长江流域资源与环境 >> 2016, Vol. 25 >> Issue (04): 613-620.doi: 10.11870/cjlyzyyhj201604011

• 生态环境 • 上一篇    下一篇

基于SD和CLUE-S模型的区域土地利用变化对土壤有机碳储量影响研究

田多松1, 傅碧天1, 吕永鹏1,2, 杨凯1, 车越1   

  1. 1. 华东师范大学生态与环境科学学院 上海市城市化生态过程与生态恢复重点实验室, 上海 200241;
    2. 上海市政工程设计研究总院(集团)有限公司, 上海 200092
  • 收稿日期:2015-08-03 修回日期:2015-11-25 出版日期:2016-04-20
  • 通讯作者: 车越 E-mail:yche@des.ecnu.edu.cn
  • 作者简介:田多松(1989~),男,硕士研究生,主要从事环境管理与规划方面的研究.E-mail:435826701@qq.com
  • 基金资助:
    国家自然科学基金(51408225);上海市环保局科研项目“上海市生态环境调查与评估”资助

EFFECT OF REGIONAL LAND-USE CHANGE ON SOIL ORGANIC CARBON STORAGE BASED ON SD AND CLUE-S MODEL

TIAN Duo-song1, FU Bi-tian1, LV Yong-peng1,2, YANG Kai1, CHE Yue1   

  1. 1. Shanghai Key Laboratory of Urbanization and Ecological Restoration, East China Normal University, Shanghai 200241, China;
    2. Shanghai Municipal Engineering Design Institute (Group) CO., LTD., Shanghai 200092, China
  • Received:2015-08-03 Revised:2015-11-25 Online:2016-04-20
  • Supported by:
    National Natural Science Foundation of China (51408225); Research Project of Shanghai Environmental Protection Bureau “Investigation and assessment of ecological environment in Shanghai”

摘要: 土地利用/土地覆被变化改变土壤呼吸条件,进而对土壤有机碳储量变化产生影响,而土壤有机碳储量则是影响农业可持续发展和全球碳平衡领域的重要因素。以上海市崇明岛为例,运用系统动力学模型(System Dynamics Model)预测2020、2030年土地利用需求变化,结合CLUE-S模型(Conversion of Land Use and its Effects at Small region extent Model)得出各种用地类型的空间分布,并引用碳密度法估算三种发展幕景下土地利用变化对土壤有机碳储量的影响。结果表明:2030年三种发展幕景土壤有机碳储量分别为:低速发展幕景为3 093.03×106kg,惯性发展幕景为3 079.47×106kg,高速发展幕景为3 059.81×106kg;研究期内土壤有机碳储量呈现缓慢下降趋势,但人类活动对其扰动较小;SD和CLUE-S耦合模型可以从时间和空间两方面对土壤有机碳储量进行模拟,具有可行性;建议通过加强城镇用地集约利用、农田保护、林地建设来减少人为活动对土壤有机碳储量的影响。

关键词: SD模型, CLUE-S模型, 土地利用, 有机碳储量, 崇明岛

Abstract: Carbon cycle or carbon balance is altered by human activities and carbon storage, especially soil organic carbon storage has become the focus of the world. Therefore, predicting the future carbon storage and selecting proper regional development paths have immense values. By taking Chongming Island as an example, this paper predicts its land use demand from 2011 to 2030 using the SD model, and then simulates landuse spatial distribution by the CLUE-S model. Finally, this study investigated the effect of land use changes on carbon storage under three development scenarios. Total population, GDP, urban construction land, agricultural land, forest and orchard land, urban green land, water and swamp area and other land are the level variables of the SD model. Remote sensing data of 2000, 2005 and 2010 years and statistical data of Chongming County Statistical Yearbook are the basic data of the paper. Testing stage of the SD model is from the year 2000 to 2010 and simulation stage is from 2011 to 2030.Based on the trend of historical development and some regional future plans, three scenarios (L, A and H) have been built up in the next decades. L means the development pattern with a low developing speed, A means the economic development pattern at a current developing speed, and H means the development pattern with a high developing speed. There are 12 driving factors in the CLUE-S model such as the distance of main towns, important towns, rural settlements, main roads, secondary roads, main rivers and wetland reserves, per capita GDP, population density, urbanization level, road density and river density. The results of logistic regression are used to check the availability of driving factors and land-use spatial distribution, which indicates that the value of ROC is appropriate. The results reflect that total soil carbon storage declines slowly and the decreasing rate is 1.40% and 1.32% from 2010 to 2020 and 2020 to 2030 during the study periods, respectively. The influence of human activities on the total soil carbon reserves is weak, but the influence of one single land use type is serious. For instance, in the H scenario, the declining rate of total soil carbon storage is 2.72% from 2010 to 2030,while the decreasing rate of carbon storage in agricultural land and forest and orchard land is 30.13% and 126.60%, respectively. L scenario is selected as the better development pattern with the largest total soil carbon storage. L, A and H scenario in 2030, the soil carbon storage of which are 3093.03×106kg, 3079.47×106kg and 3059.81×106kg, respectively. It is reasonable and practical to simulate and calculate the ecosystem carbon storage by the coupled SD and CLUE-S models in both temporal and spatial scales. This paper then proposes some useful suggestions to reduce the impact of human activities on soil carbon process, such as strengthening farmland protection, promoting forest construction and improving land-use structure.

Key words: SD model, CLUE-S model, land use, carbon storage, Chongming Island

中图分类号: 

  • X321
[1] 郭广芬, 张称意, 徐影. 气候变化对陆地生态系统土壤有机碳储量变化的影响[J]. 生态学杂志, 2006, 25(4): 435-442. [GUO G F, ZHANG C Y, XU Y. Effects of climate change on soil organic carbon storage in terrestrial ecosystem[J]. Chinese Journal of Ecology, 2006, 25(4): 435-442.]
[2] IPCC. Landuse, Land-Use Change and Forestry[M]. Cambridge: Cambridge University Press, 2000.
[3] BATJES N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 1996, 47(2): 151-163.
[4] LAL R. World soils and the greenhouse effect[J]. Global Change News Letter, 1999, 37: 4-5.
[5] RAICH J W, POTTER C S. Global patterns of carbon dioxide emissions from soils[J]. Global Biogeochemical Cycles, 1995, 9(1): 23-36.
[6] 张彩云, 于法展, 李岚, 等. 徐州市城区绿地土壤碳储量格局及养分特征[J]. 水土保持研究, 2012, 19(1): 120-124. [ZHANG C Y, YU F Z, LI L, et al. The pattern of carbon storage and nutrient characteristics of the soil in the greenbelt in Xuzhou City[J]. Research of Soil and Water Conservation, 2012, 19(1): 120-124.]
[7] 张伟畅, 盛浩, 钱奕琴, 等. 城市绿地碳库研究进展[J]. 南方农业学报, 2012, 43(11): 1712-1717. [ZHANG W C, SHENG H, QIAN Y Q, et al. Carbon storage in urban green space[J]. Journal of Southern Agriculture, 2012, 43(11): 1712-1717.]
[8] 王瑞静, 赵敏, 高俊. 城市森林主要植被类型碳储量研究--以崇明岛为例[J]. 地理科学, 2011, 31(4): 490-494. [WANG R J, ZHAO M, GAO J. Carbon storage of main vegetation types of urban forest, Chongming island of China[J]. Scientia Geographica Sinica, 2011, 31(4): 490-494.]
[9] 马文红, 韩梅, 林鑫, 等. 内蒙古温带草地植被的碳储量[J]. 干旱区资源与环境, 2006, 20(3): 192-195. [MA W H, HAN M, LIN X, et al. Carbon storage in vegetation of grasslands in Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2006, 20(3): 192-195.]
[10] 王启基, 李世雄, 王文颖, 等. 江河源区高山嵩草(Kobresia pygmaea)草甸植物和土壤碳、氮储量对覆被变化的响应[J]. 生态学报, 2008, 28(3): 885-894. [WANG Q J, LI S X, WANG W Y, et al. The despondences of carbon and nitrogen reserves in plants and soils to vegetation cover change on Kobresia pygmaea meadow of Yellow River and Yangtze River source region[J]. Acta Ecologica Sinica, 2008, 28(3): 885-894.]
[11] 罗怀良. 川中丘陵地区近55年来农田生态系统植被碳储量动态研究--以四川省盐亭县为例[J]. 自然资源学报, 2009, 24(2): 251-258. [LUO H L. Dynamic of vegetation carbon storage of farm land ecosystem in hilly area of Central Sichuan Basin during the last 55 Years-a case study of Yanting County, Sichuan Province[J]. Journal of Natural Resources, 2009, 24(2): 251-258.]
[12] 王其藩. 高级系统动力学[M]. 北京: 清华大学出版社, 1995. [WANG Q F. Advanced System Dynamics[M]. Beijing: Tsinghua University Press, 1995.]
[13] 唐亚平. SD模型在陕西省土地利用总体规划中的应用[J]. 西北大学学报(自然科学版), 2012, 42(6): 1007-1010. [TANG Y P, The applications of system dynamics model to the comprehensive land use planning of Shaanxi Province[J]. Journal of Northwest University (Natural Science Edition), 2012, 42(6): 1007-1010.]
[14] 车越, 张明成, 杨凯. 基于SD模型的崇明岛水资源承载力评价与预测[J]. 华东师范大学学报(自然科学版), 2006(6): 67-74. [CHE Y, ZHANG M C, YANG K. Evaluation and predication of water resources carrying capacity based on SD model: a case study of Chongming Island[J]. Journal of East China Normal University (Natural Science), 2006(6): 67-74.]
[15] 吴健生, 冯喆, 高阳, 等. CLUE-S模型应用进展与改进研究[J]. 地理科学进展, 2012, 31(1): 3-10. [WU J S, FENG Z, Gao Y, et al. Recent progresses on the application and improvement of the CLUE-S model[J]. Progress of Geography, 2012, 31(1): 3-10.]
[16] WASSENAAR T, GERBER P, VERBURG P H, et al. Projecting land use changes in the Neotropics: the geography of pasture expansion into forest[J]. Global Environmental Change, 2007, 17(1): 86-104.
[17] 上海市崇明县县志编纂委员会. 上海崇明县志[M]. 上海: 上海人民出版社, 1989. [County Annals Compilation Committee of Chongming County. County Annals of Chongming. Shanghai[M]. Shanghai: Shanghai People's Press, 1989.]
[18] 中国国家标准化管理委员会. GB/T 21010-2007土地利用现状分类[S]. 北京: 中国标准出版社, 2007. [Standardization Administration of the People's Republic of China. GB/T 21010-2007 Current land use classification[S]. Beijing: China Standards Press, 2007.]
[19] 翟羽佳, 王丽婧, 郑丙辉, 等. 基于SD模型的小江流域协调发展模式研究[J]. 环境科学与技术, 2012, 35(11): 167-172. [ZHAI Y J, WANG L J, ZHENG B H, et al. Sustainable development patterns in Xiaojiang River basin based on system dynamic model[J]. Environmental Science & Technology, 2012, 35(11): 167-172.]
[20] 苏懋康, 王浣尘. 系统动力学模型的灵敏度分析[J]. 系统工程, 1988, 6(4): 7-12. [SU M K, WANG H C. Sensitivity analysis of system dynamics model[J]. Systems Engineering, 1988, 6(4): 7-12.]
[21] 张志强, 冯立杰, 王金凤. 煤矿水灾害影响因子的系统动力学研究[J]. 工业工程, 2012, 15(2): 128-133. [ZHANG Z Q, FENG L J, WANG J F. Research on influencing factors of colliery flood based on system dynamics[J]. Industrial Engineering Journal, 2012, 15(2): 128-133.]
[22] 陈其晖, 凌培亮, 谢作斌. 基于系统动力学的成人高校发展战略决策模型及其灵敏度分析[J]. 计算机辅助工程, 2008, 17(1): 67-71. [CHEN Q H, LING P L, XIE Z B. Strategic decision making model for adult higher college development based on system dynamics and its sensitivity Analysis[J]. Computer Aided Engineering, 2008, 17(1): 67-71.]
[23] PONTIUS JR R G. Quantification error versus location error in comparison of categorical maps[J]. Photogrammetric Engineering & Remote Sensing, 2000, 66(8): 1101-1016.
[24] PONTIUS JR R G, CORNELL J D, HALL C A S. Modeling the spatial pattern of land-use change with GEOMOD2: application and validation for Costa Rica[J]. Agriculture, Ecosystem & Environment, 2001, 85(1/3): 191-203.
[25] PONTIUS JR R G, SCHNEIDER L C. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA[J]. Agriculture, Ecosystem & Environment, 2001, 85(1/3): 239-248.
[26] PONTIUS JR R G. Statistical methods to partition effects of quantity and location during Comparison of categorical maps at multiple resolution[J]. Photogrammetric Engineering & Remote Sensing, 2002, 68(10): 1041-1049.
[27] 彭建. 喀斯特生态脆弱区土地利用/覆被变化研究--以贵州猫跳河流域为例[D]. 北京: 北京大学博士学位论文, 2006: 113-116. [PENG J. Land use/cover change in ecologically fragile Karst areas-A case study in Maotiaohe River basin[D]. Beijing: Doctor Dissertation of Peking University, 2006: 113-116.]
[28] 摆万奇, 张永民, 阎建忠, 等. 大渡河上游地区土地利用动态模拟分析[J]. 地理研究, 2005, 24(2): 206-212. [BAI W Q, ZHANG Y M, YAN J Z, et al. Simulation of land use dynamics in the upper reaches of the Dadu river[J]. Geographical Research, 2005, 24(2): 206-212.]
[29] 程先富, 史学正, 于东升, 等. 兴国县森林土壤有机碳库及其与环境因子的关系[J]. 地理研究, 2004, 23(2): 211-217. [CHENG X F, SHI X Z, YU D S, et al. Organic carbon pool of forest soil and its relationship to environment factors in Xingguo County of Jiangxi province[J]. Geographical Research, 2004, 23(2): 211-217.]
[30] 申广荣, 葛晓烨, 黄秀梅. 上海崇明岛表层土壤有机碳密度的空间分布特征及碳储量估算[J]. 上海交通大学学报(农业科学版), 2011, 29(6): 61-66. [SHEN G R, GE X Y, HUANG X M. Spatial distribution of topsoil organic carbon density and assessment of its reserves in Chongming island, Shanghai[J]. Journal of Shanghai Jiaotong University (Agricultural Science), 2011, 29(6): 61-66.]
[31] 史利江. 基于遥感和GIS的上海土地利用变化与土壤碳库研究[D]. 上海: 华东师范大学博士学位论文, 2009: 73-76. [SHI L J. The research on LUCC and soil organic carbon pool of Shanghai Based on RS and GIS[D]. Shanghai: Doctor Dissertation of East China Normal University, 2009: 73-76.]
[32] 揣小伟, 黄贤金, 赖力, 等. 基于GIS的土壤有机碳储量核算及其对土地利用变化的响应[J]. 农业工程学报, 2011, 27(9): 1-6. [CHUAI X W, HUANG X J, LAI L, et al. Accounting of surface soil carbon storage and response to land use change based on GIS[J]. Transactions of the CSAE, 2011, 27(9): 1-6.]
[33] 李正才, 杨校生, 蔡晓郡, 等. 竹林培育对生态系统碳储量的影响[J]. 南京林业大学学报(自然科学版), 2010, 34(1): 24-28. [LI Z C, YANG X S, CAI X J, et al. Effects of bamboo cultivation on the carbon storage[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2010, 34(1): 24-28.]
[34] 卢瑛, 甘海华, 史正军, 等. 深圳城市绿地土壤肥力质量评价及管理对策[J]. 水土保持学报, 2005, 19(1): 153-156. [LU Y, GAN H H, SHI Z J, et al. Soil fertility quality assessment and managing measures for urban green space in Shenzhen City[J]. Journal of Soil and Water Conservation, 2005, 19(1): 153-156.]
[35] VERBURG P H, EICKHOUT B, VAN MEIJL H. A multi-scale, multi-model approach for analyzing the future dynamics of European land use[J]. The Annals of Regional Science, 2008, 42(1): 57-77.
[1] 童小容, 杨庆媛, 毕国华, . 重庆市2000~2015年土地利用变化时空特征分析[J]. 长江流域资源与环境, 2018, 27(11): 2481-2495.
[2] 高洁芝, 郑华伟, 刘友兆. 基于熵权TOPSIS模型的土地利用多功能性诊断[J]. 长江流域资源与环境, 2018, 27(11): 2496-2504.
[3] 程建, 程久苗, 吴九兴, 徐玉婷. 2000~2010年长江流域土地利用变化与生态系统服务功能变化[J]. 长江流域资源与环境, 2017, 26(06): 894-901.
[4] 沈胤胤, 胡雷地, 姜泉良, 江俊武, 吴亚林, 黄涛, 杨浩, 宋挺, 黄昌春. 基于SWAT模型的太湖西北部30a来氮磷的输出特征[J]. 长江流域资源与环境, 2017, 26(06): 902-914.
[5] 姚振兴, 陈庆强, 杨钦川. 近60年来崇明岛东部淤涨速率初探[J]. 长江流域资源与环境, 2017, 26(05): 698-705.
[6] 闵敏, 林晨, 熊俊峰, 沈春竹, 金志丰, 马荣华, 许金朵. 不同土地利用模式下洪泽湖流域非点源颗粒态磷负荷时空演变研究[J]. 长江流域资源与环境, 2017, 26(04): 606-614.
[7] 虎陈霞, 郭旭东, 连纲, 张忠明. 长三角快速城市化地区土地利用变化对生态系统服务价值的影响——以嘉兴市为例[J]. 长江流域资源与环境, 2017, 26(03): 333-340.
[8] 李沁, 沈明, 高永年, 张志飞. 基于改进粒子群算法和元胞自动机的城市扩张模拟——以南京为例[J]. 长江流域资源与环境, 2017, 26(02): 190-197.
[9] 赵志刚, 余德, 韩成云, 王凯荣. 2008~2016年鄱阳湖生态经济区生态系统服务价值的时空变化研究[J]. 长江流域资源与环境, 2017, 26(02): 198-208.
[10] 田柳, 陈江龙, 高金龙. 城市空间结构紧凑与土地利用效率耦合分析——以南京市为例[J]. 长江流域资源与环境, 2017, 26(01): 26-34.
[11] 戴刘冬, 周锐, 张凤娥, 王新军. 城市土地利用对居民通勤碳排放的影响研究[J]. 长江流域资源与环境, 2016, 25(Z1): 68-77.
[12] 谢莹, 匡鸿海, 吴晶晶, 程玉丝. 基于CLUE-S模型的重庆市渝北区土地利用变化动态模拟[J]. 长江流域资源与环境, 2016, 25(11): 1729-1737.
[13] 徐磊, 董捷, 张安录. 湖北省土地利用减碳增效系统仿真及结构优化研究[J]. 长江流域资源与环境, 2016, 25(10): 1528-1536.
[14] 毕国华, 杨庆媛, 王兆林, 匡垚瑶, 慕卫东. 丘陵山区都市边缘农村居民点土地利用空间特征分析——以重庆两江新区为例[J]. 长江流域资源与环境, 2016, 25(10): 1555-1565.
[15] 翟天林, 金贵, 邓祥征, 李兆华, 王润. 基于多源遥感影像融合的武汉市土地利用分类方法研究[J]. 长江流域资源与环境, 2016, 25(10): 1594-1602.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[2] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[3] 金晓斌,易理强,王慎敏,周寅康. 基于协调发展视角的区域发展差异研究[J]. 长江流域资源与环境, 2008, 17(4): 511 .
[4] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[5] 黄 峰 魏 浪 李 磊 朱 伟. 乌江干流中上游水电梯级开发水温累积效应[J]. 长江流域资源与环境, 2009, 18(4): 337 .
[6] 胡鸿兴, 张岩岩, 何伟, 田蓉, 钟鑫, 韩世松, 李思思, 王俊杰陈文方, 杨阳, 陈侈, 邓晗, 文英, 崔雅婷, 李茜,  王璇, 彭菁菁, 高鑫, 唐义. 神农架大九湖泥炭藓沼泽湿地对镉(Ⅱ)、铜(Ⅱ)、铅(Ⅱ)、锌(Ⅱ)的净化模拟[J]. 长江流域资源与环境, 2009, 18(11): 1050 .
[7] 蔡海生, 肖复明, 张学玲. 基于生态足迹变化的鄱阳湖自然保护区生态补偿定量分析[J]. 长江流域资源与环境, 2010, 19(06): 623 .
[8] 王月容, 周金星, 周志翔, 孙启祥. 洞庭湖退田还湖区不同土地利用方式对土壤养分库的影响[J]. 长江流域资源与环境, 2010, 19(06): 634 .
[9] 段金荣, 张红燕, 刘凯, 徐东坡, 张敏莹, 施炜纲. 湖泊的宜渔性评价研究——以蠡湖为例[J]. 长江流域资源与环境, 2010, 19(06): 666 .
[10] 余真真, 王玲玲, 戴会超, 成高峰. 三峡水库香溪河库湾水温分布特性研究[J]. 长江流域资源与环境, 2011, 20(1): 84 .