长江流域资源与环境 >> 2019, Vol. 28 >> Issue (06): 1262-1275.doi: 10.11870/cjlyzyyhj201906002

• 区域可持续发展 • 上一篇    下一篇

长江经济带县域信息化水平的空间差异及影响因素

刘晓阳1,黄晓东2,丁志伟1*   

  1. (1. 河南大学环境与规划学院/区域发展与区域规划中心/黄河中下游数字地理技术教育部重点实验室,河南 开封 475004;2. 河南大学黄河文明与可持续发展研究中心,河南 开封 475001)
  • 出版日期:2019-06-20 发布日期:2019-06-20

Spatial Pattern and Its Influencing Factors of Informationization Level at County Level in Yangtze River Economic Belt

LIU Xiao-yang1, HUANG Xiao-dong2, DING Zhi-wei1   

  1. (1. College of Environment and Planning / The Centre for the Regional Development and Planning, Henan University/Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions,Ministry of Education, Kaifeng 475004, China;2. The Center for Yellow River Civilization and Sustainable Development, Henan University, Kaifeng 475001,  China)
  • Online:2019-06-20 Published:2019-06-20

摘要: 在县域尺度下,以长江经济带719个县(市)作为空间研究单元,构建以信息化发展环境支撑、信息基础设施建设水平、信息技术创新支撑、信息网络消费水平4个层次9个具体指标的信息化水平评价体系,运用均方差决策法、空间插值、空间自相关分析、核密度估计等方法分析长江经济带县域信息化水平的空间分布特征以及影响因素。研究表明:(1)从空间聚类分布上看,长江经济带信息化水平东西地区差异显著,呈现出一个核心发展片区,多个副核心中心,整体由东部沿海向西部内陆递减的空间格局;(2)从空间关联格局上看,长江经济带信息化水平存在空间集聚现象。以显著HH区与显著LL区为主,显著HH区主要在金华、绍兴、温州、苏州、南通、常州等地区的县(市)分布;显著LL区主要在全椒县、和县、枞阳县等分布;(3)从核密度估计上看,随着搜索半径的扩大,长江经济带县域信息化水平空间层次性趋于明显,由最初长三角地区的两个高密度值区转变为多核心-边缘结构,最终形成高密度值片区;(4)从影响因素的解读看,区位条件的差异化影响明显,经济基础的支撑作用强,工业化、科技化进程与信息化水平相匹配,政策的引领作用强但不同水平区作用效果不一,人才与科技支撑在中西部地区需要大力提升。

Abstract: Informatization has become one of the important driving in regional modernization and comprehensive strength. Based on 719 study units in the Yangtze River Economic Belt at county scale, this paper builds an evaluation system with four key elements which contain 9 specific indicators to measure the level of regional informatization, and the four key elements are informatization development environment, the level of informatization infrastructure, informatization innovation capability and the level of networking information consumption. This paper aims to reveal differences in the spatial distribution characteristics of the counties and the factors influencing their development level, by means of using a comprehensive method of mean-variance weighting method, spatial interpolation, exploratory spatial data analysis and kernel density estimation. According to the research, four highlights are unveiled:(1) Overall the informationization level shows the significant regional differences, with the eastern coastal cities higher than those in the western interior at county scale in Yangtze River Economic Belt. Moreover, the high informationization level tends to be distributed in the Yangtze River Delta.(2) From the pattern of spatial auto-correlation, the level of informationization appears significant spatial agglomeration characteristics, that is means the number of the High-High regions(HH regions) and the Low-Low regions(LL regions) occupy most and the spatial agglomeration pattern is obvious. The significant HH areas are mainly distributed in Jinhua, Shaoxing, Wenzhou, Suzhou, Nantong, Changzhou, ect. The significant LL areas have mainly concentrated in Quanjiao, Hexian, Zongyang, ect.(3) From the result of kernel density estimation, the spatial level of informationization in the Yangtze River Delta becomes more obvious in the different search radius. The high density is centrally distributed in the Yangtze River Delta.(4) According to the spatial characteristics of informationization level, the mainly impact factors include geographic conditions, the level of economic development, the strategic policy, the personnel training and the innovation of science and technology.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韦 杰, 贺秀斌. 人类活动对嘉陵江流域泥沙负荷的影响[J]. 长江流域资源与环境, 2010, 19(2): 196 .
[2] 袁晓玲|李政大|刘伯龙. 中国区域环境质量动态综合评价——基于污染排放视角[J]. 长江流域资源与环境, 2013, 22(01): 118 .
[3] 胡洋|余辉|李中强. 湿沉降对湖泊水质及初级生产力的影响[J]. 长江流域资源与环境, 2014, 23(01): 75 .
[4] 王 珏, 袁丰. 基于演化树模型的长江三角洲城市紧凑度综合评价[J]. 长江流域资源与环境, 2014, 23(06): 741 .
[5] 黄蕊, 陆玉麒, 陆梦秋. 不同能源政策下苏浙沪能源消费碳排放高峰估计[J]. 长江流域资源与环境, 2017, 26(01): 15 -25 .
[6] 陈 莹,胡梦可,方 勇. 武汉市土地利用程度和经济发展的重心迁移及耦合协调性研究[J]. 长江流域资源与环境, 2017, 26(8): 1131 .
[7] 高洁芝, 郑华伟, 刘友兆. 基于熵权TOPSIS模型的土地利用多功能性诊断[J]. 长江流域资源与环境, 2018, 27(11): 2496 -2504 .
[8] 邱 宇, 陈英姿, 饶清华, 林秀珠, 陈文花. 基于排污权的闽江流域跨界生态补偿研究[J]. 长江流域资源与环境, 2018, 27(12): 2839 -2847 .
[9] 黄晓慧, 王礼力, 陆迁. 资本禀赋对农户水土保持技术价值认知的影响——以黄土高原区为例[J]. 长江流域资源与环境, 2019, 28(01): 222 -230 .
[10] 郭贯成, 彭紫新, 周志伟. 工业企业类型对工业用地利用效率的影响研究——基于企业类型宏观视角的分类 [J]. 长江流域资源与环境, 2019, 28(02): 241 -249 .