长江流域资源与环境 >> 2019, Vol. 28 >> Issue (06): 1502-1510.doi: 10.11870/cjlyzyyhj201906024

• 自然灾害 • 上一篇    

基于高斯过程回归模型的洪涝灾害损失预测研究——以重庆市为例

龚艳冰1,2,向林1,刘高峰1   

  1. (1. 河海大学 统计与数据科学研究所,江苏 常州 213022; 2. 江苏省“世界水谷”与水生态文明协同创新中心,江苏 南京 211100)

  • 出版日期:2019-06-20 发布日期:2019-06-20

Study on Flood Disaster Loss Prediction Based on Gaussian Process Regression Model:A Case Study of Chongqing City

GONG Yan-bing1,2, XIANG Lin1, LIU Gao-feng1   

  1. (1. Institute of Statistics and Data Science, Hohai University, Changzhou 213022, China; 2. Jiangsu Provincial Collaborative Innovation Center of World Water Valley and Water Ecological Civilization, Nanjing 211100, China)
  • Online:2019-06-20 Published:2019-06-20

摘要: 快速准确的预测洪涝灾害各项损失是开展洪涝灾害应急管理工作的基础,而预测技术和方法则是洪涝灾害损失预测的核心与关键。从灾害风险构成因素和数据易获取性2方面构建了洪涝灾害损失评估指标体系,分别从致灾因子、孕灾环境、承灾体和应急能力4个方面选取了13项损失评估输入指标,提出基于高斯过程回归模型的洪涝灾害损失预测方法,并应用于重庆市洪灾受灾人数、农作物受灾面积和直接经济损失的预测。实例表明,高斯过程回归方法对上文提到的3种损失情况预测结果的残差平方和分别为0.99、0.1、12.67,拟合精度分别达到99.85%、99.97%、96.1%,相较于多层感知器神经网络和支持向量机等方法更具优越性。

Abstract: Fast and accurate prediction of flood damage is the basis for emergency management of flood disasters, and forecasting techniques and methods are the core and key to flood disaster loss prediction. This paper constructs a flood disaster assessment index system from the aspects of disaster risk component and data accessibility, and selects 13 loss assessment input indicators from disaster-causing factors, affected environment, disaster-bearing object and emergency response capability. A prediction method of flood damage loss based on Gaussian process regression model is proposed, which is applied to the prediction of the flood damage loss in Chongqing of affected number of people, crop affected area and direct economic losses. The example shows that the residual square sum of the three loss cases mentioned above is 0.99, 0.1 and 12.67 respectively, and the fitting precision is 99.85%, 99.97% and 96.1% respectively. Compared with the multi-layer perceptron neural network and support vector machine, the Gauss process regression method is more superior.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郑明媚,李满春,毛 亮,黎韶光. GIS支持的县域人口迁移空间模型研究——以浙江省临安市为例[J]. 长江流域资源与环境, 2006, 15(3): 281 -286 .
[2] 王红丽,| 刘 健 | 况雪源. 四种再分析资料与长江中下游地区降水观测资料的对比研究[J]. 长江流域资源与环境, 2008, 17(5): 703 .
[3] 王云琦,王玉杰,朱金兆. 重庆缙云山典型林分林地土壤抗蚀性分析[J]. 长江流域资源与环境, 2005, 14(6): 775 -780 .
[4] 常青山,马祥庆,王志勇. 南方重金属矿区重金属的污染特征及评价[J]. 长江流域资源与环境, 2007, 16(3): 395 .
[5] 曹 昀,王国祥. 水生高等植物对悬浮泥沙的去除研究[J]. 长江流域资源与环境, 2007, 16(3): 340 .
[6] 胡振鹏, 葛, 刚, 刘成林, 陈伏生, 李, 述. 鄱阳湖湿地植物生态系统结构及湖水位对其影响研究[J]. 长江流域资源与环境, 2010, 19(06): 597 .
[7] 周国兵, 王式功. 重庆市主城区空气污染天气特征研究[J]. 长江流域资源与环境, 2010, 19(11): 1345 .
[8] 谢青霞|花 明|谢晓晖. 低碳经济形势下江西省发展核产业链的潜力和对策[J]. 长江流域资源与环境, 2011, 20(11): 1291 .
[9] 林孝松,陈洪凯,王先进,唐红梅,褚春超,覃庆梅,梁学战,陈远川. 西南地区公路洪灾孕灾环境分区[J]. 长江流域资源与环境, 2012, 21(02): 251 .
[10] 周 华 |周生路 |金平华. 江苏省种粮补贴区域差异化理论与实证研究[J]. 长江流域资源与环境, 2012, 21(11): 1342 .