长江流域资源与环境 >> 2019, Vol. 28 >> Issue (11): 2735-3742.doi: 10.11870/cjlyzyyhj201911020

• 长江经济带岸线资源研究(专栏) • 上一篇    下一篇

长江中游滨岸带水体氨氮循环速率及影响因素

薛惊雅1,2,刘伟婷1,2,姜星宇1,2,赵中华1,张路1*,蔡永久1,王晓龙1   

  1. (1.中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,
    江苏 南京 210008;2.中国科学院大学,北京 100049)
  • 出版日期:2019-11-20 发布日期:2019-11-29

Ammonium Recycling and Its Influencing Factors Along the Littoral Zone of the Middle Reaches of Yangtze River

XUE Jing-ya1,2, LIU Wei-ting1,2, JIANG Xing-yu1,2, ZHAO Zhong-hua1,  ZHANG Lu1, CAI Yong-jiu1, WANG Xiao-long1    

  1. (1. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; 2. University of Chinese Academy of Science, Beijing 100049, China)

  • Online:2019-11-20 Published:2019-11-29

摘要: 氨氮(NH4+)是大多数浮游生物优先利用的氮源,其在水体中的再生过程(REG)和潜在吸收过程(Upot)影响水体初级生产力和生物群落的生长。以长江为研究对象,采用同位素稀释法对长江中游滨岸带水体的NH4+循环速率进行研究。结果显示:长江中游滨岸带水体NH4+再生速率为0.12~1.62 μmol/(L·h),潜在吸收速率为0.21~2.35 μmol/(L·h),生物群落NH4+需求(CBAD)为0.08~0.75 μmol/(L·h)。NH4+再生速率、潜在吸收速率和生物群落NH4+需求均随水流方向自宜昌至鄱阳湖湖口呈现显著的下降趋势(p<0.05)。统计分析表明,化学需氧量(COD)(p<0.01)和悬浮物浓度(SS)(p<0.05)是影响长江中游水体NH4+循环速率的主要因素。长江中游水体NH4+再生速率占潜在吸收速率的43.1%~76.0%,均值为58.5±8.5%,表明NH4+再生是长江中游水体中生物群落NH4+吸收过程的主要NH4+来源。估算得到的NH4+再生量是长江中游水体TN负荷的2倍,表明水体NH4+再生在支持水体初级生产力和维持氮素内循环方面具有重要作用。


Abstract: Ammonium(NH4+) is the preferred nitrogen form for plankton, its regeneration(REG) and potential uptake(Upot) are related to primary productivity and growth of organisms in water ecosystems. In this study, NH4+ recycling rates in the littoral zone of the middle reach of the Yangtze River were studied by using the isotope dilution method. Results showed that the REG rates in the middle reach of the Yangtze River were 0.12-1.62 μmol/(L·h), the Upot rates were 0.21-2.35 μmol/(L·h), and the community biological NH4+ demand(CBAD) rates were 0.08-0.75 μmol/(L·h). Moreover, along with the flow direction of Yangtze River, NH4+ recycling rates showed significant decreased trend from Yichang to Poyang Lake estuary(p<0.05). Statistical analyses showed that chemical oxygen demand(COD) and suspended solids(SS) are the main factors influencing the NH4+ recycling rates in the middle reach of the Yangtze River. During the study area, the REG rates accounted for 43.1%-76.0% of the Upot rates, with a mean value of 58.5%±8.5%. This indicated that REG is the main source of NH4+ in the process of Upot by the biological communities in the middle reach of the Yangtze River. NH4+ produced by REG process is 2 times higher than that of water column TN loads, indicating that REG plays an important role in supporting primary productivity and maintaining nitrogen internal circulation. 


No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李宗尧,|杨桂山. 经济快速发展地区生态环境竞争力的评价方法——以安徽沿江地区为例[J]. 长江流域资源与环境, 2008, 17(1): 124 .
[2] 许乃银 | 张国伟 | 李 健 | 周治国. 基于GGE双标图和纤维长度选择的长江流域棉花区域试验环境评价[J]. 长江流域资源与环境, 2013, 22(06): 735 .
[3] 闵文彬. 西藏林芝地区空气动力学阻抗估算模型适用性分析[J]. 长江流域资源与环境, 2016, 25(04): 606 -612 .
[4] 李丹, 郭生练, 洪兴骏, 郭靖. 汉江流域1960~2014年降雨极值时空变化特征[J]. 长江流域资源与环境, 2016, 25(09): 1448 -1456 .
[5] 郁鸿胜. 书评:《长江经济带协同创新研究:创新·合作·空间·治理》[J]. 长江流域资源与环境, 2017, 26(01): 158 .
[6] 张英浩, 陈江龙, 程 钰. 环境规制对中国区域绿色经济效率的影响机理研究——基于超效率模型和空间面板计量模型实证分析[J]. 长江流域资源与环境, 2018, 27(11): 2407 -2418 .
[7] 刘金科, 韩贵琳, 阳昆桦, 柳满. 九龙江流域河水溶解态碳的时空变化[J]. 长江流域资源与环境, 2018, 27(11): 2578 -2587 .
[8] 潘 静, 沈建忠, 孙林丹, 熊 雷. 长江、赣江鲢幼鱼耳石核区元素指纹特征分析及其在群体识别中的应用研究[J]. 长江流域资源与环境, 2018, 27(12): 2740 -2746 .
[9] 杨达源, 黄贤金, 施利锋, 李升峰. 1973~2017年扬中市江岸冲淤遥感监测及古河道塌江分析[J]. 长江流域资源与环境, 2018, 27(12): 2796 -2804 .
[10] 何莎莎, 朱文博, 崔耀平, 何春龙, 叶露培, 冯小燕, 朱连奇, . 基于InVEST模型的太行山淇河流域土壤侵蚀特征研究[J]. 长江流域资源与环境, 2019, 28(02): 426 -439 .