长江流域资源与环境 >> 2020, Vol. 29 >> Issue (3): 654-667.doi: 10.11870/cjlyzyyhj202003012

• 自然资源 • 上一篇    下一篇

基于供需匹配模型的秦巴山区人地关系均衡状态及空间管控研究

敬  博1,2,李同昇1*,祁  航2,朱依平2   

  1. (1.西北大学城市与环境学院,陕西 西安 710127;2.西安建筑科技大学城市规划设计研究院,陕西 西安 710055)
  • 出版日期:2020-03-20 发布日期:2020-03-20

Research on Equilibrium State and Space Control of Man-land Relationship in Qinba Mountains on the Base of Supply and Demand Matching Model

JING Bo 1,2,LI Tong-sheng1,QI Hang2,ZHU Yi-ping2   

  1. (1.College of Urban and Environmental Science,Northwest University,Xi’an 710127, China;2.Institute of Urban Planning and Design, Xi’an University of Architecture and Technology,Xi’an 710055, China)
  • Online:2020-03-20 Published:2020-03-20

摘要: 摘  要:通过构建供需匹配模型对秦巴山区人地关系均衡状态进行定量研究,采用OLS最小二乘法和GWR地理加权法对空间供给能力和空间需求强度间的作用关系和影响机制进行了分析,在此基础上提出针对性、差异化的空间管控模式。结果表明:(1)秦巴山区存在明显的供需空间错位,供给能力中部高、外围低,中部高值区的区县供给指数多处于0.72~1.16之间,外围区县供给指数多小于0.6;需求强度则与供给能力基本相反,中部区县需求强度均小于0.14,外围和东部区域需求强度普遍较高,最高值主要位于秦岭北麓、东麓和汉江中游的区县;这种供需错位源于复杂地形阻隔下的空间资源配置失效。(2)人-地供需两端相互作用,作用程度在地形影响下存在明显空间分异。(3)人地关系均衡指数总体较低,且分布极不平衡,呈现明显的“中部低、外围高”特征,低效均衡、协调均衡与空间失衡的区县数量比约为11∶3∶2。(4)可将研究区分为发展严控区、发展提升区、发展优化区和发展疏解区四大管控分区,针对均衡状态制定人地调控对策。

Abstract: Abstract:Quantitative research on the equilibrium state of man-land relationship in Qinba Mountains is conducted through constructing a supply and demand matching model, the interaction relationship and the influence mechanism between the spatial supply capacity and the spatial demand intensity are analyzed by means of OLS least squares method and GWR geographical weighting method, and hence space control model of pertinence and differentiation is put forward on these basis. The main conclusions include: (1) There is obvious spatial dislocation of supply and demand in Qinba Mountains, the supply capacity is high in the middle and low in outskirts. The supply index of districts and counties in the middle with high value is mostly between 0.72 and 1.16, while the supply index of districts and counties in outskirts is mostly less than 0.6. However, the demand intensity is basically opposite to supply capacity. The demand intensity of districts and counties in the middle areas is all less than 0.14, while the demand intensity of the peripheral and eastern areas is generally high, and the highest value mainly appears in districts and counties at the northern and eastern foothills of Qinling Mountains and at the middle reaches of Han River; the unmatched supply and demand is originated from ineffective space resource allocation separated by complex terrain. (2) There is an interaction between the two ends of man-land supply and demand, and there exists clear spatial differentiation in the interaction degree under the influence of terrain; (3) The equilibrium index of man-land relationship is generally low, and extremely uneven in distribution, which is clearly characterized by ‘being low in the middle and high in the periphery’. The quantity ratio of districts and counties that are of inefficient equilibrium, coordinated equilibrium, and spatial disequilibrium is about 11:3:2; (4) The research areas can be divided into four control subareas: development-controlled area, development-promoted area, development-optimized area and development-dispersed area, and the man-land regulatory countermeasures are formulated on the basis of the equilibrium state.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 武周虎,张娜. 河滩人工湿地对河流洪水位影响的数值模拟[J]. 长江流域资源与环境, 2007, 16(1): 7 -10 .
[2] 班茂盛. 长三角大都市带人口容量与资源环境支撑能力建设[J]. 长江流域资源与环境, 2008, 17(4): 501 .
[3] 原艳梅, 林振山, 陈玲玲. 基于EMD的中国经济增长与能源消费的关系[J]. 长江流域资源与环境, 2009, 18(12): 1098 .
[4] 张 健,濮励杰,陕永杰,张润森,许 艳,朱 明,彭补拙. 海岸带土地开发利用及生态环境效应研究简述[J]. 长江流域资源与环境, 2012, 21(01): 36 .
[5] 杜吴鹏, 房小怡, 轩春怡,郭文利, 潘莉卿. MM5与CALMET对北京地区风能资源的初步模拟[J]. 长江流域资源与环境, 2012, 21(01): 84 .
[6] 黄英, 丁明涛, 庙成, 王骏, 周鹏. 云南蒋家沟泥石流运动特征及其发展趋势[J]. 长江流域资源与环境, 2015, 24(08): 1434 -1442 .
[7] 李建豹, 黄贤金. 基于空间面板模型的碳排放影响因素分析——以长江经济带为例[J]. 长江流域资源与环境, 2015, 24(10): 1665 -1671 .
[8] 陈桃, 包安明, 何大明. 基于MODIS NDVI的攀枝花市植被覆盖变化及其驱动力#br#[J]. 长江流域资源与环境, 2018, 27(08): 1847 .
[9] 冯 冬, 李 健.  

我国三大城市群城镇化水平对碳排放的影响 [J]. 长江流域资源与环境, 2018, 27(10): 2194 -2200 .

[10] 龚艳冰 向林 刘高峰. 基于高斯过程回归模型的洪涝灾害损失预测研究[J]. 长江流域资源与环境, 0, (): 0 .