长江流域资源与环境 >> 2021, Vol. 30 >> Issue (2): 397-406.doi: 10.11870/cjlyzyyhj202102014

• 生态环境 • 上一篇    下一篇

气候变暖背景下安徽省月NDVI动态变化研究

徐光来1,2* ,杨先成 1,2,徐晓华 1,李爱娟 1,2,杨强强 1,2   

  1. (1.安徽师范大学地理与旅游学院,安徽 芜湖 241003;
    2. 安徽省江淮流域地表过程与区域响应重点实验室,安徽 芜湖 241003)
  • 出版日期:2021-02-20 发布日期:2021-03-18

Dynamic Changes of Monthly NDVI in Anhui Province Under Background of Climate Warming

XU Guang-lai 1,2,YANG Xian-cheng 1,2,XU Xiao-hua 1,LI Ai-juan 1,2,YANG Qiang-qiang 1,2   

  1. (1.School of Geography and Tourism, Auhui Normal University, Wuhu 241003,China;
    2.Anhui Key Laboratory of Natural Disaster Process and Prevention, Wuhu 241003,China)
  • Online:2021-02-20 Published:2021-03-18

摘要: 地表植被覆盖时空动态变化能很好地反映气候变化。基于2000~2016年MODIS NDVI逐月数据及同期内格点降水和气温数据,探讨了安徽省NDVI时空变化及其与气象因子的关系,结果表明:(1)安徽省NDVI呈显著增加的趋势,全省平均增速为5.7~11.3×10-3/a,其中,旱地增长较快,阔叶林和灌丛增长较缓。时间上,除水田外,10月至翌年3月具有显著增加趋势,6~9月增加趋势不明显。空间上,皖南山区、江淮之间大别山区和淮北平原增长较快;(2)各种植被类型月均NDVI与气温或降水具有相关性。且NDVI均为与前一个月的气温或降水相关性最高的时滞特点;(3)像元尺度NDVI与气温的偏相关系数较大,其中正相关达到0.01显著性水平的面积占92.2%。而与降水的偏相关性较小,其中正相关达到0.01显著性水平的面积仅占8.2%。月尺度NDVI的驱动类型分析结果表明,气温驱动型占75.0%,降水气温共同驱动型占15.3%。研究结果可为全球变暖背景下区域生态系统管理和保护提供理论参考。

Abstract: The spatiotemporal dynamic change of vegetation cover can well reflect the climate change. Based on the monthly data of MODIS NDVI from 2000 to 2016 and the precipitation and temperature data of the grid within the same period, the spatial and temporal changes of NDVI in Anhui Province and its relationship with meteorological factors are explored in this paper. The results show that: (1)NDVI in Anhui Province shows a significant increase trend, with average growth rate of 5.7-11.3×10 -3/a in the whole province. Among which dryland grows faster, while broad-leaved forest and shrub grows slower. In terms of time, there is a pronounced tendency from October to next March except paddy field, but not obvious from June to September. Spatially, the mountain areas in southern Anhui, Dabie Mountain Areas and Huaibei Plain are growing rapidly. (2)Monthly average NDVI has correlation with temperature or precipitation in each vegetation type. Moreover, the correlation has a one-month lag. That is, NDVI had the strongest correlation with last month's temperature or precipitation. (3)On pixel-scale, the partial correlation between NDVI and temperature is very strong. The area with positive correlation reaching 0.01 significance accounts for 92.2%. However, the partial correlation with precipitation is weak. The area with positive correlation reaching 0.01 level only accounts for 8.2%. Driving factors analysis of monthly NDVI show that 75.0% is temperature-driving type, and 15.3% is precipitation and temperature co-driving type. The results of this study can provide a theoretical reference for the management and protection of regional ecosystems under global warming of terrestrial ecosystems.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 傅春, 欧阳莹, 陈炜. 环鄱阳湖区水足迹的动态变化评价[J]. 长江流域资源与环境, 2011, 20(12): 1520 .
[2] 李向富, 刘目兴, 易军, 吴四平, 杨叶, 娄淑兰, . 峡山地不同垂直带土壤层的水文功能及其影响因子[J]. 长江流域资源与环境, 2018, 27(08): 1809 .
[3] 何松蔚, 王成刚, 姜海梅, 曹乐, 王新伟. 2015年冬季苏州城市热岛特征研究[J]. 长江流域资源与环境, 2018, 27(09): 2078 .
[4] 刘莲, 刘红兵, 汪涛, 朱波, 姜世伟. 三峡库区消落带农用坡地磷素径流流失特征[J]. 长江流域资源与环境, 2018, 27(11): 2609 -2618 .
[5] 孙殿臣, 王慧敏, 黄 晶, 刘高峰, . 鄱阳湖流域城市洪涝灾害风险及土地类型调整策略研究 ——以景德镇市为例[J]. 长江流域资源与环境, 2018, 27(12): 2856 -2866 .
[6] 李雪松, 龙湘雪, 齐晓旭. 长江经济带城市经济-社会-环境耦合协调发展的动态演化与分析[J]. 长江流域资源与环境, 2019, 28(03): 505 -516 .
[7] 匡亮, 张鹏, 杨洪雨, 梁瑞峰, 王远铭, 李克锋. 梯级水库叠梁门分层取水水温改善效果的衰减[J]. 长江流域资源与环境, 2019, 28(05): 1244 -1251 .
[8] 范辉. 基于推拉理论的“农二代”耕作意愿研究[J]. 长江流域资源与环境, 0, (): 0 .
[9] 杨 冕, 张艺千, 王春晓. 湖北省关键生态系统服务供需状况的时空变化研究[J]. 长江流域资源与环境, 2019, 28(09): 2080 -2091 .
[10] 熊美华, 杨 志, 胡兴坤, 阙延福. 长江中游监利江段鱼类群落结构研究[J]. 长江流域资源与环境, 2019, 28(09): 2109 -2118 .