长江流域资源与环境 >> 2021, Vol. 30 >> Issue (4): 915-924.doi: 10.11870/cjlyzyyhj202104014

• 生态环境 • 上一篇    下一篇

城市化背景下建成区扩展及其对河网变化的影响 ——以苏州市为例

田壮壮1,2,关燕宁1* ,郭杉1,张春燕1,蔡丹路1,肖寒2,3,姚武韬1,2, 于敏1,2   


  1. (1. 中国科学院空天信息创新研究院,北京 100094; 2. 中国科学院大学,北京 100049; 3. 中国科学院地理科学与资源研究所,北京 100101)
  • 出版日期:2021-04-20 发布日期:2021-05-17

River Network Changes Over Suzhou China: An Insight from Urban Expansion

TIAN Zhuangzhuang 1,2, GUAN Yanning 1, GUO Shan 1, ZHANG Chunyan 1,  CAI Danlu 1, XIAO Han 2,3, YAO Wutao 1,2, YU Min 1,2   

  1. (1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)
  • Online:2021-04-20 Published:2021-05-17

摘要: 根据苏州快速城市化与水网密布的典型地域特征,利用不同空间分辨率卫星遥感信息,通过标准化处理流程,获取2002~2018年期间多期苏州建成区与水网专题信息,采用垂直类比的定量化方法,在区域和地理空间格网单元的层面,对城市建设用地与河网水系进行空间叠加分析。探讨城市化进程中建成区建设用地与河网水系分布的格局,以及河网的密度、河链数、节点数、连接率和分形维数等特征参数动态变化与相互影响关系。结果表明:(1)苏州城市空间扩展特征已经从区域中心建成区放射型蔓延向多中心建成区放射型+网络化的蔓延方式改变。(2)苏州河网水系伴随建设用地扩展,密度持续降低,建成区以外的农田植被区河网水系分布格局未发生根本性改变。河网连接率未发生变化,连通性维持稳定,分形维数稍有降低,河网结构复杂性略有下降。(3)河网变化受建成区扩展影响显著。前期各建成区格网单元内水网密度降低空间分布较为均匀,后期主要集中于建成区增量所占比例较低的网格单元即主要发生在建成区边缘扩展区域。本文的方法可为遥感信息在城市生态系统的空间规划决策和遥感尺度效应研究提供科学依据。

Abstract: To understand geographical presentation of rapid urbanization and dense river network in Suzhou China, the authors utilize remote sensing information of different spatiotemporal resolution (2002-2018) to map the built-up areas and river network within the city through standardized processes. A vertical analogous quantitative method is applied to analyze the spatiotemporal relationship between urban expansion and river network recession at regional and pixel scales. Such relationship is essential in order to predict likely responses of river network recession induced by accelerating urbanization around rivers in terms of characteristic parameters such as river network density, river chains, nodes, connection rate and fractal dimension, and shows the following results: (1) The urban constructions in Suzhou have changed from expanding in all directions around the regional downtown to expanding around the multiple downtown associated with a networked connection. (2) The river network density has decreased during the urban expansion, with a stable connection rate induced by similar connectivity index, and a slightly decreased fractal dimension indicated slightly decrease of river network complexity. In the meantime, outside of the downtown, the river network has not shown obvious changes in the farmland and vegetation area. (3) The river network is significantly affected by urban expansion. Before 2010, the river network density has decreased evenly distributed in all grid cells. But after 2010, the decreases of the river network are more concentrated in grid cells with a lower proportion of built-up increment, which meant the decreases mainly occurred in the border of the urban expansion. The method in this research can provide scientific basis for the spatial planning decision making of urban ecosystem and the remote sensing scale effect research.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 乔卫芳 | 牛海鹏| 赵同谦. 基于SWAT模型的丹江口水库流域农业非点源污染的时空分布特征[J]. 长江流域资源与环境, 2013, 22(02): 190 .
[2] 熊勤学, 胡佩敏. 基于HJ卫星混合像元分解法的湖北省四湖地区夏收作物种植信息提取[J]. 长江流域资源与环境, 2014, 23(06): 869 .
[3] 戴昭鑫, 张云芝, 胡云锋, 董昱. 基于地面监测数据的2013~2015年长三角地区PM2.5时空特征[J]. 长江流域资源与环境, 2016, 25(05): 813 -821 .
[4] 闫东升, 杨槿, 陈雯. 失地农民生活满意度测度及影响因素研究——以南京市仙林新村为例[J]. 长江流域资源与环境, 2018, 27(07): 1450 .
[5] 张婷, 王学雷, 耿军军, 班璇, 杨超, 吕晓蓉. 基于MIKE21和灰色模式识别模型的洪湖水质模拟与评价[J]. 长江流域资源与环境, 2018, 27(09): 2090 -2100 .
[6] 陈叶华, 李志威, 沈小雄, . 芭蕉湖-南湖连通工程的连通性评价[J]. 长江流域资源与环境, 2019, 28(03): 731 -738 .
[7] 高艳丽, 董 捷, 李 璐, 李红波. 碳排放权交易政策的有效性及作用机制研究——基于建设用地碳排放强度省际差异视角[J]. 长江流域资源与环境, 2019, 28(04): 783 -793 .
[8] 黄隆杨, 刘胜华, 李健. 城市生态用地时空动态及其相关驱动力——以武汉市为例[J]. 长江流域资源与环境, 2019, 28(05): 1059 -1069 .
[9] 魏小芳, 赵宇鸾, 李秀彬, 薛朝浪, 夏四友. 基于“三生功能”的长江上游城市群国土空间特征及其优化[J]. 长江流域资源与环境, 2019, 28(05): 1070 -1079 .
[10] 邹润彦, 周宏冀, 郭熙, 但承龙, 吕添贵, 李洪义. 环鄱阳湖区农田土壤有机碳影响因素空间分布格局分析及制图研究[J]. 长江流域资源与环境, 2019, 28(05): 1121 -1131 .