长江流域资源与环境 >> 2023, Vol. 32 >> Issue (3): 507-515.doi: 10.11870/cjlyzyyhj202303006

• 自然资源 • 上一篇    下一篇

干热河谷梯级库区土壤微生物群落特征及其影响因素研究

孙干1,孙然好2,徐火清1,孙龙2*,董一帆3,孙涛2,陈利顶2   

  1. (1. 中国三峡建工(集团)有限公司,四川 成都 610041;2. 中国科学院生态环境研究中心城市与区域生态国家重点实验室,北京 100085;3. 云南大学,云南 昆明 650091)
  • 出版日期:2023-03-20 发布日期:2023-04-19

Characterization of Soil Microbial Communities and Their Influencing Factors in Hot-dry Valleys with Cascade Reservoirs

SUN Gan1,SUN Ran-hao2,XU Huo-qing1,SUN Long2,DONG Yi-fan3,SUN Tao2,CHEN Li-ding2   

  1. (1. China Three Gorges Construction Engineering Corporation, Chengdu 610041, China; 2. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
     3. Yunnan University, Kunming 650091, China)

  • Online:2023-03-20 Published:2023-04-19

摘要: 水电开发蓄水能够影响周边气候、植被甚至土壤养分循环,土壤微生物是环境变化的敏感土壤因子,其对梯级水电开发的响应并不明确。在4、9月采集金沙江下游向家坝、溪洛渡、白鹤滩、乌东德4个梯级库区土壤样品,通过磷脂脂肪酸(PLFA)法量化了干热河谷梯级库区4、9月土壤微生物PLFA总量及群落结构,分析了梯级库区土壤微生物变化的主导因素,明确了水电开发截流、蓄水对土壤微生物的影响。结果表明:(1)气象因子、土壤养分能够解释大部分土壤微生物的变异,干热特征更明显的白鹤滩、乌东德库区(84.1%、93.5%)解释度高于向家坝、溪洛渡库区(41.1%、77.0%);(2)土壤微生物在4月主要与全氮、有效氮、降水呈正相关,与温度、潜在蒸散发呈负相关。土壤微生物在9月主要与降水、有机质、有效氮呈正相关,与潜在蒸散发呈负相关;(3)在4、9月蓄水对土壤微生物变异的单独贡献度分别为2.2%、6.8%,与其它因子协同解释度不超过22.4%。而在白鹤滩、乌东德库区,在4、9月蓄水(截流)对土壤微生物变异的单独贡献度分别为5.5%、8.3%,与其它因子的协同贡献度均为13%。总体上,金沙江下游干热河谷梯级水电开发引起的河道截流、水库蓄水会影响土壤微生物PLFA及其群落结构,但其影响容易被气候变化和土壤养分所掩盖。梯级水电站蓄水可能在一定程度上缓和典型干热河谷气候对土壤微生物的不利影响、提高土壤微生物群落结构稳定性。本研究有助于深入认识土壤微生物对水电开发的响应,对于科学评估水电开发的陆生生态系统影响及土壤资源可持续性具有重要意义。

Abstract: Reservoir impoundment affects local climate. The soil microbes are a sensitive indicator for environmental changes and their response to dam development is rarely investigated. This study investigated the soil microbial in April and September in four reservoir zone: Xiluodu, Xiangjiaba, Baihetan, and Wudongde in the lower Jinsha River. The total PLFA content and soil microbial community in April and September in the reservoir areas of the dry-hot valleys were determined by the phospholipid fatty acid (PLFA) method. This study analyzed the dominant factors of soil microbial variations and quantified the effects of river interception and reservoir impoundment on the soil microbial community. The results showed that: (1) meteorological factors and soil nutrients could explain most of the variation of soil microbes, with the degree of explanation of Baihetan and Wudongde reservoirs (84.1%, 93.5%) larger than Xiangjiaba and Xiluodu reservoirs (41.1%, 77.0%). (2) soil microbes positively correlated with total nitrogen, available nitrogen, and precipitation in April, and negatively correlated with temperature and potential evapotranspiration. In September, soil microbes positively correlated with precipitation, organic matter, and available nitrogen, and negatively correlated with potential evapotranspiration.(3) the individual contribution of water impoundment to soil microbial variation in April and September was 2.2% and 6.8%, respectively, and the variation explained by both impoundment and other factors less than 22.4%. In contrast, in the Baihetan and Wudongde reservoirs, the individual contribution of the impoundment to soil microbial variation in April and September was 5.5% and 8.3%, respectively, and the joint contribution with other factors was 13% in both cases. Overall, impoundment caused by the hydropower development in the lower Jinsha River in hot-dry valleys affects soil microbial PLFA content and their community structure, but their effects are easily masked by climate change and soil properties. The impoundment in the cascade reservoirs, to some extent, moderates the adverse effects of typical hot and dry climate on soil microorganisms and improve the stability of soil microbial community structure. This study contributes to an in-depth understanding of the response of soil microorganisms to hydropower development and is important for the scientific assessment of the terrestrial ecosystem impacts of hydropower development and soil sustainability.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李向富, 刘目兴, 易军, 吴四平, 杨叶, 娄淑兰, . 峡山地不同垂直带土壤层的水文功能及其影响因子[J]. 长江流域资源与环境, 2018, 27(08): 1809 .
[2] 李雪松 龙湘雪 齐晓旭. 长江经济带城市经济-社会-环境耦合协调发展的动态演化与分析[J]. 长江流域资源与环境, , (): 0 .
[3] 何松蔚, 王成刚, 姜海梅, 曹乐, 王新伟. 2015年冬季苏州城市热岛特征研究[J]. 长江流域资源与环境, 2018, 27(09): 2078 .
[4] 吴浪, 周廷刚, 温莉, 刘晓璐, 朱晓波. 基于遥感数据的PM2.5与城市化的时空关系研究——以成渝城市群为例[J]. 长江流域资源与环境, 2018, 27(09): 2142 -2152 .
[5] 马小亮, 刘桂民, 吴晓东, 徐海燕, 叶琳琳, 张晓兰. 三江源高寒草甸下溪流溶解性有机碳的季节性输移特征[J]. 长江流域资源与环境, 2018, 27(10): 2387 -2394 .
[6] 苏 芳, 郑亚萍, 阚立娜, 蔡 莎. 基于CVM调查法评估城市公共绿地服务价值 ——以西部省会城市为例[J]. 长江流域资源与环境, 2018, 27(11): 2434 -2442 .
[7] 朱立一, 何伟, 朱璧然, . 纳米二氧化硅和铅复合暴露对 斑马鱼幼鱼甲状腺内分泌系统的毒性影响[J]. 长江流域资源与环境, 2018, 27(11): 2588 -2596 .
[8] 刘莲, 刘红兵, 汪涛, 朱波, 姜世伟. 三峡库区消落带农用坡地磷素径流流失特征[J]. 长江流域资源与环境, 2018, 27(11): 2609 -2618 .
[9] 孙殿臣, 王慧敏, 黄 晶, 刘高峰, . 鄱阳湖流域城市洪涝灾害风险及土地类型调整策略研究 ——以景德镇市为例[J]. 长江流域资源与环境, 2018, 27(12): 2856 -2866 .
[10] 罗若愚 钟易霖. 成都市社会空间结构演变研究(2000~2010)[J]. 长江流域资源与环境, , (): 0 .