长江流域资源与环境 >> 2023, Vol. 32 >> Issue (3): 498-506.doi: 10.11870/cjlyzyyhj202303005

• 自然资源 • 上一篇    下一篇

金沙江流域捕食线虫真菌空间分布格局及其驱动机制探究

张欣1,2,齐宇坤1,2,张发1,2,邓巍1,2,杨晓燕1,2,3*,肖文1,2,3,4,5,6   

  1. (1.大理大学东喜玛拉雅研究院, 云南 大理 671003; 2.云南省高校洱海流域保护与可持续发展研究重点实验室, 云南 大理 671003; 3.三江并流区域生物多样性保护与利用云南省创新团队, 云南 大理 671003;4.中国三江并流区域生物多样性协同创新中心, 云南 大理 671003; 5. 云岭滇金丝猴云南省野外科学观测研究站, 云南 大理 671003; 6. 滇西北文化生态保护研究中心,云南 大理 671003)

  • 出版日期:2023-03-20 发布日期:2023-04-19

Spatial Distribution Pattern and Driving Factors of Nematode-trapping Fungi in Jinsha River Basin

ZHANG Xin1,2, QI Yu-kun1,2, ZAHNG Fa1,2, DENG Wei1,2, YANG Xiao-yan1,2,3, XIAO Wen1,2,3,4,5,6   

  1. (1. Institute of Eastern-Himalaya Biodiversity Research, Dali 671003, China; 2. The “Key Laboratory of Yunnan State Education Department on Er’hai Lake Basin Protection and the Sustainable Development Research”, Dali 671003, China; 3. The provincial innovation team of biodiversity conservation and utility of the three parallel rivers region from Dali University, Dali 671003, China; 4. Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China; 5. Yunling black-and-white snub-nosed monkey observation and research station of Yunnan province, Dali, Yunnan 671003, China; 6.Center for Cultural Ecology in Northwest Yunnan, Dali, Yunnan 671003, China)
  • Online:2023-03-20 Published:2023-04-19

摘要: 为探究金沙江流域内捕食线虫真菌(Nematode-Trapping Fungi, NTF)的空间分布格局及其驱动机制,在该流域设置了54个采样点,分别采集各采样点的对称水体底泥、陆地土壤样品各5份。结合传统纯培养法、形态学和分子生物学方法对NTF进行分离、纯化和鉴定。共采集到样品540份,从中分离得到3属29种567株NTF,上中下游分别检出2属16种79株、2属18种205株和3属21种283株,NTF的检出率和物种丰富度从上游至下游依次递增;陆地土壤中共检出3属23种354株,水体底泥中共检出2属22种213株,陆地土壤中NTF的检出率和物种丰富度均高于水体底泥。(1)地理环境因子中,经纬度和海拔均对NTF的物种丰富度和检出率具有显著的影响(P<0.05);(2)物候条件上,年均温对NTF物种丰富度和检出率均有显著的影响(P<0.05),而年均降雨量对NTF的物种丰富度和检出率均影响不显著(P>0.05);(3)在土壤理化性质方面,土壤pH、总钾和总磷对NTF物种丰富度的影响极显著(P<0.01),土壤总磷、总钾和有机质对NTF物种检出率有显著的影响(P<0.05),而土壤总氮对NTF的物种分布影响不显著(P>0.05)。结果表明,NTF在金沙江流域内的上中下游、水陆间存在异质性分布格局,地理因素、物候条件及土壤理化因子均在不同程度上共同驱动了这一格局的形成。

Abstract: To examine the spatial distribution patterns of nematode-trapping fungi (NTF) and driving factors in the Jinsha River Basin in North China, 54 sampling sites were set up along the river, and 5 samples of aquatic sediment and 5 samples of terrestrial soil were taken from each sampling site. The NTF strains were isolated, purified, and identified using conventional pure culture techniques along with morphological and molecular biology techniques. 540 samples were collected and a total of 567 strains, classified into 29 species and 3 genera, were isolated. The upstream stream included 79 strains, which were classified into 16 species from 2 genera; the middle stream contained 205 strains, which were classified into 18 species from 2 genera; and the downstream contained 283 strains, which were classified into 21 species from 3 genera. From upstream to lower, NTF detection rates and species richness increased. Terrestrial soil had 354 strains classified into 23 species from 3 taxa, and aquatic silt included 213 strains classified into 22 species from 2 genera. In comparison to aquatic sediment, terrestrial soil had greater detection rates and species richness of NTF. (1) Among the geographical environmental factors, both longitude, latitude and altitude had significant effects on the species richness and detection rate of NTF (P<0.05).(2) Under phenological conditions, the average annual temperature had significant effects on species richness and detection rate of NTF (P<0.05), while average annual rainfall had no significant effects on species richness and detection rate of NTF (P>0.05).(3) In terms of soil physical and chemical properties, soil pH, total potassium and total phosphorus had extremely significant effects on species richness (P<0.01), soil total phosphorus, total potassium and organic matter had significant effects on species detection rate (P<0.05), while soil total nitrogen had no significant effects on species distribution of NTF (P>0.05).Geographical factors, phenological conditions and soil physicochemical factors all jointly drive the formation of this pattern to different degrees.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庄汝龙, 宓科娜, 梁龙武. 中国工业废水排放格局及其驱动因素[J]. 长江流域资源与环境, 2018, 27(08): 1765 .
[2] 崔鑫 靳文佳 王永杰 周立旻 郑祥民. 上海市公园湖泊表层沉积物中汞的特征及其污染评价[J]. 长江流域资源与环境, , (): 0 .
[3] 唐恩斌, 张梅青.  

高铁背景下城市铁路可达性与空间相互作用格局——以江西省为例 [J]. 长江流域资源与环境, 2018, 27(10): 2241 -2249 .

[4] 顾铮鸣, 金晓斌, 沈春竹, 金志丰, 周寅康. 近15a江苏省水源涵养功能时空变化与影响因素探析[J]. 长江流域资源与环境, 2018, 27(11): 2453 -2462 .
[5] 高洁芝, 郑华伟, 刘友兆. 基于熵权TOPSIS模型的土地利用多功能性诊断[J]. 长江流域资源与环境, 2018, 27(11): 2496 -2504 .
[6] 邱 宇, 陈英姿, 饶清华, 林秀珠, 陈文花. 基于排污权的闽江流域跨界生态补偿研究[J]. 长江流域资源与环境, 2018, 27(12): 2839 -2847 .
[7] 王 冰, 程 婷. 我国中部城市环境全要素生产率的时空演变——基于Malmquist-Luenberger生产率指数分解方法[J]. 长江流域资源与环境, 2019, 28(01): 48 -59 .
[8] 王刚毅, 刘 杰. 基于改进水生态足迹的水资源环境与经济发展协调性评价——以中原城市群为例[J]. 长江流域资源与环境, 2019, 28(01): 80 -90 .
[9] 黄晓慧, 王礼力, 陆迁. 资本禀赋对农户水土保持技术价值认知的影响——以黄土高原区为例[J]. 长江流域资源与环境, 2019, 28(01): 222 -230 .
[10] 郭贯成, 彭紫新, 周志伟. 工业企业类型对工业用地利用效率的影响研究——基于企业类型宏观视角的分类 [J]. 长江流域资源与环境, 2019, 28(02): 241 -249 .