长江流域资源与环境 >> 2010, Vol. 19 >> Issue (06): 703-.

• 湖泊资源与环境保护 • 上一篇    下一篇

太湖沉积速率分布演化及其淤积程度健康评价

朱金格1,2|胡维平1*|胡春华1   

  1. (1.中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室|江苏 南京 210008〖QS〗;2.中国科学院研究生院,北京 100049)〖
  • 出版日期:2010-06-20

DISTRIBUTION OF DEPOSITION RATE OF LAKE TAIHU AND ITS HEALTH ASSESSMENT

ZHU Jinge1,2|HU Weiping1|HU Chunhua1   

  1. (1.State Key Laboratory of Lake Science and Environment|Nanjing Institute of Geography and Limnology|Chinese Academy of Sciences|Nanjing 210008|China〖QS〗;2.Graduate University of the Chinese Academy of Sciences|Beijing 100049|China)
  • Online:2010-06-20

摘要:

分阶段(1963~1986,1986~2002)分析了太湖各湖区沉积速率空间分布,发现各湖区沉积速率均有不同程度的增加,以东太湖最为显著,从29 mm/a增加至124 mm/a。同一沉积速率对不同水深的湖泊有不同的意义,因此为了对太湖各湖区淤积程度进行健康评价,提出相对沉积速率的概念,即沉积速率与湖泊平均水深的比值,并将其作为评价湖泊淤积程度健康与否的指标。健康评价标准根据国内主要湖泊的相对沉积速率确定,即最大相对沉积速率健康得分为0,相对沉积速率为0,健康得分为100,归一化求得太湖各湖区淤积程度健康得分。结果表明,贡湖、湖心区处于健康状态,东太湖为不健康,其他湖区为亚健康,全湖有从亚健康向不健康发展的趋势。〖

Abstract:

The deposition rate of different zones of Lake Taihu was evaluated at two stages (1963~1983,1983~2002).The results showed that the deposition rates increased at different degrees in space,and the East Lake was the most significant in Lake Taihu.It increased from 29 mm/a to 124 mm/a. Since deposition rate has different meaning to different depth of shallow lake,the relative deposition rate (RDR) was proposed to assess the health states of Lake Taihu in deposition.RDR is the ratio of deposition rate to depth.The health index was determined by the deposition situation of the principal domestic lakes.The lake of maximum  RDR was defined as health score of 0,and the lake of RDR being 0 was defined as health score of 100,thus the health index of Lake Taihu could be calculated by linear interpolate.The RDR shows that Gonghu bay and Centre lake are in health states,East lake is the only unhealth zone,and the others are subhealth.The whole lake has a deteriorate trend from subhealth to unhealth.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 万金保, 李媛媛. 湖泊水质模型研究进展[J]. 长江流域资源与环境, 2007, 16(6): 805 .
[2] 吴丰林,周德民,胡金明. 基于景观格局演变的城市湿地景观生态规划途径[J]. 长江流域资源与环境, 2007, 16(3): 368 .
[3] 吴开亚, 王玲杰. 巢湖流域大气污染的经济损失分析[J]. 长江流域资源与环境, 2007, 16(6): 781 .
[4] 陈 华,郭生练,郭海晋,徐高洪,徐德龙. 汉江流域1951~2003年降水气温时空变化趋势分析[J]. 长江流域资源与环境, 2006, 15(3): 340 -345 .
[5] 凌成星, 张怀清, 林 辉. 利用混合水体指数模型(CIWI)提取滨海湿地水体的信息[J]. 长江流域资源与环境, 2010, 19(2): 152 .
[6] 葛 刚, 纪伟涛, 刘成林, 熊舒, 吴志强. 鄱阳湖水利枢纽工程与湿地生态保护[J]. 长江流域资源与环境, 2010, 19(06): 606 .
[7] 周长艳, 王顺久, 徐捷, 李跃清. 长江上游和中下游地区空中水汽资源气候特征对比分析[J]. 长江流域资源与环境, 2010, 19(Z2): 56 .
[8] 许朗|黄莺|刘爱军. 基于主成分分析的江苏省水资源承载力研究[J]. 长江流域资源与环境, 2011, 20(12): 1468 .
[9] 宋 策 | 谭奇林. 水电工程干扰下饮用水水源地的水质风险评估[J]. 长江流域资源与环境, 2013, 22(01): 59 .
[10] 于秀娟 |燕 琴 | 刘正军 | 郗利华 | 王 苑. 三江源区植被覆盖度的定量估算与动态变化研究[J]. 长江流域资源与环境, 2013, 22(01): 66 .