长江流域资源与环境 >> 2016, Vol. 25 >> Issue (04): 630-637.doi: 10.11870/cjlyzyyhj201604013

• 生态环境 • 上一篇    下一篇

丹江口水库表层沉积物不同形态氮的赋存特征及其生物有效性

赵丽1, 姜霞1, 王雯雯1, 王书航1, 常乐2, 陈俊伊1   

  1. 1. 中国环境科学研究院, 环境基准与风险评估国家重点实验室, 北京 100012;
    2. 南阳市环境保护科学研究所有限公司, 河南 南阳 473000
  • 收稿日期:2015-07-20 修回日期:2015-12-24 出版日期:2016-04-20
  • 通讯作者: 姜霞 E-mail:jiangxia@craes.org.cn
  • 作者简介:赵丽(1987~),女,硕士,主要从事湖泊水环境研究.E-mail:zhaoli20061212@126.com
  • 基金资助:
    中国东部湖泊沉积物底质调查(2014FY110400-01)

OCCURRENCE CHARACTERISTICS AND BIO-AVAILABILITY OF NITROGEN FRACTIONS IN SEDIMENTS OF DANJIANGKOU RESERVOIR

ZHAO Li1, JIANG Xia1, WANG Wen-wen1, WANG Shu-hang1, CHANG Le2, CHEN Jun-yi1   

  1. 1. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China;
    2. Nanyang Research Institution of Environmental Protection Science, Nanyang 473000, China
  • Received:2015-07-20 Revised:2015-12-24 Online:2016-04-20
  • Supported by:
    Sediment Survey of Lakes in Eastern China (2014FY110400-01)

摘要: 为了揭示丹江口水库沉积物氮空间分布特征及其生物有效性,采用连续分级提取法研究了表层沉积物中可交换态氮(Exchangeable nitrogen,EN)、酸解态氮(Acid hydrolysable nitrogen,HN)及残渣态氮(Residue nitrogen,RN)的赋存特征,同时结合生物可利用态氮的含量,探讨了各形态氮对生物可利用态氮的贡献。结果表明,丹江口水库沉积物中总氮(Totalnitrogen,TN)在425~5796 mg/kg之间,平均为1 319.32 mg/kg,其中EN、HN和RN的平均值相对比例为2.15:1.95:1,且各形态氮含量的空间分布呈入库河流大于库区开阔区域的特征,尤其在丹江、老灌河以及犟河-堵河入库口的含量较大。潜在矿化氮(Potential mineralized nitrogen,PMN)含量在40.20~1 468.95 mg/kg之间,平均为275.06 mg/kg,其中EN对丹江口水库沉积物PMN的贡献较大,比例在19.85%~90.80%之间,平均为63.47%。各形态氮在不同的水环境条件下发生迁移转化,保持着水-沉积物界面氮的动态平衡。

关键词: 连续提取, 氮形态, 沉积物, 生物有效性, 丹江口水库

Abstract: In order to reveal the spatial distribution and bio-availability of nitrogen speciation in sediments of Danjiangkou Reservoir, the exchangeable nitrogen (EN), the acid hydrolysable nitrogen (HN) and the residue nitrogen (RN) in the surface sediment were analyzed by sequential extraction method. The results show that TN in the Danjiangkou Reservoir was 425-5796 mg/kg, with the mean value of 1319.32 mg/kg, the average value of EN, HN and RN relative proportions is 2.15: 1.95: 1, and the spatial distribution of various forms of nitrogen content in warehousing river is higher than the reservoir, especially in Danjiang, Laoguan river and the mouth of Jiang river - Du river. Nitrogen mineralization potential was 40.20-1468.95mg/kg, with the mean value of 275.06 mg/kg; the exchangeable nitrogen's contribution to the danjiangkou reservoir sediment PMN is bigger, ratio between 19.85%-90.80%, with the average of 63.47%. Migration and transformation of different forms of nitrogen happened in different water environment conditions, keeping dynamic balance between water and sediment.

Key words: sequential extraction methods, nitrogen speciation, sediment, bio-availability, Danjiangkou reservoir

中图分类号: 

  • X524
[1] GALLOWAY J N, BEKUNDA M, CAI Z, et al. A preliminary assessment of "changes in the global nitrogen cycle as a result of anthropogenic influences"[C]//Proceedings of the 3rd International Nitrogen Conference. Nanjing, China, 2004.
[2] REITZEL K, AHLGREN J, GOGOLL A, et al. Effects of aluminum treatment on phosphorus, carbon, and nitrogen distribution in lake sediment: A 31P NMR study[J]. Water Research, 2006, 40(4): 647-654.
[3] NI Z K, WANG S R. Historical accumulation and environmental risk of nitrogen and phosphorus in sediments of Erhai Lake, Southwest China[J]. Ecological Engineering, 2015, 79: 42-53.
[4] SHANG J G, ZHANG L, SHI C J, et al. Influence of Chironomid Larvae on oxygen and nitrogen fluxes across the sediment-water interface (Lake Taihu, China)[J]. Journal of Environmental Sciences, 2013, 25(5): 978-985.
[5] HAN H J, LU X X, BURGER D F, et al. Nitrogen dynamics at the sediment-water interface in a tropical reservoir[J]. Ecological Engineering, 2014, 73: 146-153.
[6] SHAN L N, HE Y F, CHEN J, et al. Nitrogen surface runoff losses from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China[J]. Agricultural Water Management, 2015, 159: 255-263.
[7] WANG S R, JIN X C, NIU D L, et al. Potentially mineralizable nitrogen in sediments of the shallow lakes in the middle and lower reaches of the Yangtze River area in China[J]. Applied Geochemistry, 2009, 24(9): 1788-1792.
[8] JING L D, WU C X, LIU J T, et al. The effects of dredging on nitrogen balance in sediment-water microcosms and implications to dredging projects[J]. Ecological Engineering, 2013, 52: 167-174.
[9] 王雯雯, 王书航, 姜霞, 等. 洞庭湖沉积物不同形态氮赋存特征及其释放风险[J]. 环境科学研究, 2013, 26(6): 598-605.[WANG W W, WANG S H, JIANG X, et al. Occurrence characteristics and release risk of nitrogen fractions in sediments of Dongting Lake[J]. Research of Environmental Sciences, 2013, 26(6): 598-605.]
[10] 钟立香, 王书航, 姜霞, 等. 连续分级提取法研究春季巢湖沉积物中不同结合态氮的赋存特征[J]. 农业环境科学学报, 2009, 28(10): 2132-2137.[ZHONG L X, WANG S H, JIANG X, et al. Speciation characteristics of different combined nitrogen in the spring sediments of Chaohu Lake by sequential extraction methods[J]. Journal of Agro-Environment Science, 2009, 28(10): 2132-2137.]
[11] 钟立香. 巢湖水-沉积物系统中氮的赋存变化及其与水华发生的关系研究[D]. 北京: 中国环境科学研究院硕士学位论文, 2009.[ZHONG L X. The study on nitrogen occurrence characteristic in water-sediment system and their relationship with algal bloom in Chaohu Lake[D]. Beijing: Master Dissertation of Chinese Research Academy of Environmental Sciences, 2009.]
[12] 刘远书, 高文文, 侯坤, 等. 南水北调中线水源区生态环境变化分析研究[J]. 长江流域资源与环境, 2015, 24(3): 440-446.[LIU Y S, GAO W W, HOU K, et al. Analysis of ecological environment change on watershed of the middle route of South-North water diversion project[J]. Resources and Environment in the Yangtze Basin, 2015, 24(3): 440-446.]
[13] 王书航, 姜霞, 钟立香, 等. 巢湖沉积物不同形态氮季节性赋存特征[J]. 环境科学, 2010, 31(4): 946-953.[WANG S H, JIANG X, ZHONG L X, et al. Seasonal occurrence characteristics of different forms of nitrogen in the sediments of Chaohu Lake[J]. Environmental Science, 2010, 31(4): 946-953.]
[14] 刘波, 周锋, 王国祥, 等. 沉积物氮形态与测定方法研究进展[J]. 生态学报, 2011, 31(22): 6947-6958.[LIU B, ZHOU F, WANG G X, et al. Research progress on forms of nitrogen and determination in the sediments[J]. Acta Ecologica Sinica, 2011, 31(22): 6947-6958.]
[15] YE X, WANG A J, CHEN J. Distribution and deposition characteristics of carbon and nitrogen in sediments in a semi-closed bay area, southeast China[J]. Continental Shelf Research, 2014, 90: 133-141.
[16] KEMP A L W, MUDROCHOVA A. Distribution and forms of nitrogen in a Lake Ontario sediment core[J]. Limnology and Oceanography, 1972, 17(6): 855-867.
[17] MOSCHONAS G, GOWEN R J, STEWART B M, et al. Nitrogen dynamics in the Irish Sea and adjacent shelf waters: Anexploration of dissolved organic nitrogen[J]. Estuarine, Coastal and Shelf Science, 2015, 164: 276-287.
[18] DE LANGE G J. Distribution of exchangeable, fixed, organic and total nitrogen in interbedded turbiditic/pelagic sediments of the Madeira Abyssal Plain, eastern North Atlantic[J]. Marine Geology, 1992, 109(1/2): 95-114.
[19] LI Z Y, JIA G D. Separation of total nitrogen from sediments into organic and inorganic formsfor isotopic analysis[J]. Organic Geochemistry, 2011, 42(3): 296-299.
[20] STEVENSON F J. Organic forms of soil nitrogen[M]//STEVENSON F J. Humus Chemistry: Genesis, Composition, Reactions. 2nd ed. New York: Wiley, 1997: 55-119.
[21] JONES D L, SHANNON D, JUNVEE-FORTUNE T, et al. Plant capture of free amino acids is maximized under high soil amino acid concentrations[J]. Soil Biology and Biochemistry, 2005, 37(1): 179-181.
[22] SCHULTEN H R. The three-dimensional structure of humic substances and soil organic matter studied by computational analytical chemistry[J]. Fresenius' Journal of Analytical Chemistry, 1995, 351(1): 62-73.
[23] LETSCHER R T, HANSELL D A, KADKO D, et al. Dissolved organic nitrogen dynamics in the Arctic Ocean[J]. Marine Chemistry, 2013, 148: 1-9.
[24] ZEHR J P, PAULSEN S G, AXLER R P, et al. Dynamics of dissolved organic nitrogen in subalpine Castle Lake, California[J]. Hydrobiologia, 1988, 157(1): 33-45.
[25] 谭香, 夏小玲, 程晓莉, 等. 丹江口水库浮游植物群落时空动态及其多样性指数[J]. 环境科学, 2011, 32(10): 2875-2882.[TAN X, XIA X L, CHENG X L, et al. Temporal and spatial pattern of phytoplankton community and its biodiversity indices in the Danjiangkou Reservoir[J]. Environmental Science, 2011, 32(10): 2875-2882.]
[26] 雷沛, 张洪, 单保庆. 丹江口水库典型入库支流氮磷动态特征研究[J]. 环境科学, 2012, 33(9): 3038-3045.[LEI P, ZHANG H, SHAN B Q. Dynamic characteristics of nitrogen and phosphorus in the representative input tributaries of Danjiangkou Reservoir[J]. Environmental Science, 2012, 33(9): 3038-3045.]
[27] 涂安国, 尹炜, 陈德强, 等. 丹江口库区典型小流域地表径流氮素动态变化[J]. 长江流域资源与环境, 2010, 19(8): 926-932.[TU A G, YIN W, CHEN D Q, et al. Dynamic change research of nitrogen loss from surface runoff in the typical small watershed of Danjiangkou reservoir area[J]. Resources and Environment in the Yangtza Basin, 2010, 19(8): 926-932.]
[28] 孟亚媛, 王圣瑞, 焦立新, 等. 滇池表层沉积物氮污染特征及其潜在矿化能力[J]. 环境科学, 2015, 36(2): 471-480.[MENG Y Y, WANG S R, JIAO L X, et al. Characteristics of nitrogen pollution and the potential mineralization in surface sediments of Dianchi Lake[J]. Environmental Science, 2015, 36(2): 471-480.]
[29] 焦立新. 浅水湖泊表层沉积物氮形态特征及在生物地球化学循环中的功能[D]. 呼和浩特: 内蒙古农业大学硕士学位论文, 2007.[JIAO L X. Nitrogen forms characteristic in the sediments from the Shallow Lakes and functions in biogeochemical cycling[D]. Hohhot: Master Dissertation of Inner Mongolia Agricultural University, 2007.]
[1] 张玉柱, 黄春长, 庞奖励, 查小春, 周亚利, 石彬楠, 李晓刚. 基于HEC-RAS模型的汉江上游旬阳西段超长尺度古水文演化重建[J]. 长江流域资源与环境, 2017, 26(05): 755-764.
[2] 刘海, 殷杰, 陈晶, 陈晓玲. 基于遥感影像的丹江口水库水域面积动态变化与原因研究[J]. 长江流域资源与环境, 2016, 25(11): 1759-1766.
[3] 彭焕华, 李朝奎, 唐志光, 梁继. 丹江口库区陆地植被物候空间格局及其与海拔的响应关系[J]. 长江流域资源与环境, 2016, 25(10): 1626-1634.
[4] 朱强, 杨世伦, 孟翊, 杨海飞, 吴创收, 史本伟. 近期长江口南港河槽沉积地貌变异及其可能原因[J]. 长江流域资源与环境, 2016, 25(04): 560-566.
[5] 赵敏, 张丽旭. 长江口海域表层沉积物环境质量的综合评价[J]. 长江流域资源与环境, 2016, 25(02): 284-291.
[6] 陆亚萍, 姚敏. 龙感湖表层沉积硅藻探究[J]. 长江流域资源与环境, 2015, 24(12): 2047-2053.
[7] 李正阳, 袁旭音, 王欢, 许海燕, 陈海龙, 鲁朝朋. 西苕溪干流水体、悬浮物和表层沉积物中营养盐分布特征与水质评价[J]. 长江流域资源与环境, 2015, 24(07): 1150-1156.
[8] 蒋豫, 刘新, 高俊峰, 蔡永久. 江苏省浅水湖泊表层沉积物中重金属污染特征及其风险评价[J]. 长江流域资源与环境, 2015, 24(07): 1157-1162.
[9] 尹炜, 朱惇, 雷俊山, 贾海燕, 曾祉祥. 丹江口水库典型消落区不同土地利用类型土壤养分分布[J]. 长江流域资源与环境, 2015, 24(07): 1185-1191.
[10] 弓晓峰, 孙明哲, 陈春丽, 王佳佳, 刘春英, 杨菊云, 向洪锐, 方亮. 盲数优化地积累模型评价长江中下游湖泊沉积物重金属污染[J]. 长江流域资源与环境, 2015, 24(05): 824-831.
[11] 孙婷婷, 唐涛, 申恒伦, 张长群, 孙美琴, 李斌, 蔡庆华. 香溪河流域不同介质中碳、氮、磷的分布特征及相关性研究[J]. 长江流域资源与环境, 2015, 24(05): 853-859.
[12] 朱明勇, 党海山, 谭淑端, 陈正洪, 张全发. 湖北丹江口水库库区降雨侵蚀力特征[J]. 长江流域资源与环境, 2009, 18(9): 837-.
[13] 许薇薇, 袁旭音, 黄小荣. 通吕运河河滩沉积物重金属及营养元素的季节性特征[J]. 长江流域资源与环境, 2009, 18(7): 674-.
[14] 汪福顺 刘丛强 灌 瑾 吴明红. 贵州阿哈水库沉积物中重金属二次污染的趋势分析[J]. 长江流域资源与环境, 2009, 18(4): 379-.
[15] 陈沈良,严肃庄,李玉中. 长江口及其邻近海域表层沉积物分布特征[J]. 长江流域资源与环境, 2009, 18(2): 152-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈 勇,陈国阶,杨定国. 岷江上游聚落分布规律及其生态特征——以四川理县为例[J]. 长江流域资源与环境, 2004, 13(1): 72 -77 .
[2] 陈正洪,万素琴,毛以伟. 三峡库区复杂地形下的降雨时空分布特点分析[J]. 长江流域资源与环境, 2005, 14(5): 623 -627 .
[3] 张磊,董立新,吴炳方,周万村. 三峡水库建设前后库区10年土地覆盖变化[J]. 长江流域资源与环境, 2007, 16(1): 107 -112 .
[4] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[5] 禹 娜,陈立侨,赵泉鸿. 太湖介形类动物丰度与生物量[J]. 长江流域资源与环境, 2008, 17(4): 546 .
[6] 孔令强. 水电工程农村移民入股安置模式初探[J]. 长江流域资源与环境, 2008, 17(2): 185 .
[7] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[8] 于苏俊,张 继,夏永秋. 基于遗传算法的可持续土地利用动态规划[J]. 长江流域资源与环境, 2006, 15(2): 180 -184 .
[9] 杨丽霞,杨桂山,苑韶峰. 数学模型在人口预测中的应用——以江苏省为例[J]. 长江流域资源与环境, 2006, 15(3): 287 -291 .
[10] 赵海霞 曲福田 诸培新 石晓平. 转型期的资源与环境管理:基于市场—政府—社会三角制衡的分析[J]. 长江流域资源与环境, 2009, 18(3): 211 -216 .