长江流域资源与环境 >> 2017, Vol. 26 >> Issue (05): 755-764.doi: 10.11870/cjlyzyyhj201705013
张玉柱1,2, 黄春长3, 庞奖励3, 查小春3, 周亚利3, 石彬楠3, 李晓刚4
ZHANG Yu-zhu1,2, HUANG Chun-chang3, PANG Jiang-li3, ZHA Xiao-chun3, ZHOU Ya-li3, SHI Bin-nan3, LI Xiao-gang4
摘要: 通过对汉江上游河谷开展广泛细致的野外考察,在汉江上游旬阳西段全新世黄土-土壤剖面发现四层典型的古洪水滞流沉积物。对于系统采集的样品,进行粒度成分、磁化率分析,从沉积学角度证明了它们是典型的古洪水滞流沉积物。这些古洪水滞流沉积层夹在全新世风成黄土-土壤地层序列中,其每一层古洪水滞流沉积物记录了一期古洪水事件。根据OSL测年数据,并结合考古年代学和典型剖面地层对比,确定了这四期古洪水事件分别发生在8 500~8 400 a B.P.、4 200~4 000 a B.P.、3 200~2 800 a B.P.和1 800~1 700 a B.P.。利用古洪水SWD尖灭点高程法,恢复了这四期古洪水洪峰水位,介于233.0~239.2 m之间;进而基于HEC-RAS模型重建了四期古洪水洪峰流量,介于26 500~46 800 m3/s之间。将古洪水研究成果加入后,得到了远超过实测洪水和历史洪水重现期的稀遇洪水的水文信息,延长了汉江上游安康-旬阳段流域洪水的数据序列至万年尺度,使洪峰流量-频率曲线的稀遇洪水部分有了点据控制,百年和千年一遇的洪水洪峰流量的计算由外延变为内插,提高了设计洪水的精度。并且通过古洪水水文计算得到,该河段万年一遇洪水洪峰流量为46 900 m3/s,千年一遇洪水洪峰流量为37 800 m3/s,百年一遇洪水洪峰流量为28 900 m3/s。这对于汉江上游水利工程、防洪工程和城镇建设的洪水设计提供了十分重要基础数据。
中图分类号:
[1] BAKER V R.Palaeoflood hydrology in a global context[J].CATENA,2006,66(1/2):161-168. [2] KNOX J C.Sensitivity of modern and Holocene floods to climate change[J].Quaternary Science Reviews,2000,19(1/5):439-457. [3] BENITO G,THORNDYCRAFT V R,RICO M,et al.Palaeoflood and floodplain records from Spain:evidence for long-term climate variability and environmental changes[J].Geomorphology,2008,101(1/2):68-77. [4] ALLEN C D,MACALADY A K,CHENCHOUNI H,et al.A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J].Forest Ecology and Management,2010,259(4):660-684. [5] VERSTRAETE M M,BRINK A B,SCHOLES R J,et al.Climate change and desertification:where do we stand,where should we go?[J].Global and Planetary Change,2008,64(3/4):105-110. [6] BAKER V R.Paleoflood hydrology:origin,progress,prospects[J].Geomorphology,2008,101(1/2):1-13. [7] ENGLAND Jr J F,GODAIRE J E,KLINGERB R E,et al.Paleohydrologic bounds and extreme flood frequency of the Upper Arkansas River,Colorado,USA[J].Geomorphology,2010,124(1/2):1-16. [8] GREENBAUM N,SCHWARTZ U,BENITO G,et al.Paleohydrology of extraordinary floods along the Swakop River at the margin of the Namib Desert and their paleoclimate implications[J].Quaternary Science Reviews,2014,103:153-169. [9] HUANG C C,PANG J L,ZHA X C,et al.Extraordinary hydro-climatic events during the period AD 200-300 recorded by slackwater deposits in the upper Hanjiang River valley,China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2013,374:274-283. [10] 蔡新玲,孙娴,乔秋文,等.气候变化对汉江上游径流的影响[J].气候变化研究进展,2008,4(4):220-224.[CAI X L,SUN X,QIAO Q W,et al.Effects of climate change on runoff volume in the upper reaches of the Hanjiang River[J].Advances in Climate Change Research,2008,4(4):220-224.] [11] 苏雪锐,高喜永,郭亚军.汉江上游径流时空演变规律分析[J].水利科技与经济,2010,16(10):1148-1151.[SU X R,GAO X Y,GUO Y J.Analysis on variation characteristics on the runoff series of the upper Hanjiang river[J].Water Conservancy Science and Technology and Economy,2010,16(10):1148-1151.] [12] 张楷.汉江上游暴雨洪水特性研究[J].灾害学,2006,21(3):98-102.[ZHANG K.Analyses of rainstorm and flood characteristics in the upper reaches of Hanjiang River[J].Journal of Catastrophology,2006,21(3):98-102.] [13] 殷淑燕,王海燕,王德丽,等.陕南汉江上游历史洪水灾害与气候变化[J].干旱区研究,2010,27(4):522-528.[YIN S Y,WANG H Y,WANG D L,et al.Study on historical flood disasters and climate change in the upper Reaches of the Hanjiang River[J].Arid Zone Research,2010,27(4):522-528.] [14] 卫金容.汉江上游梯级开发对水文站网的影响及对策[J].陕西水利,2010(1):105-106.[WEI J R.Effects and countermeasures of cascade development on hydrologic network in the upper reaches of Hanjiang River[J].Shaanxi Water Resources,2010(1):105-106.] [15] MURRAY A S,WINTLE A G.Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[J].Radiation Measurements,2000,32(1):57-73. [16] GRÜN R.Age.exe,computer program for the calculation of luminescence dates[M].Unpublished Computer Program.RSES,Canberra,2003. [17] HUANG C C,PANG J L,ZHA X C,et al.Extraordinary floods related to the climatic event at 4200 a BP on the Qishuihe River,middle reaches of the Yellow River,China[J].Quaternary Science Reviews,2011,30(3/4):460-468. [18] AN Z S,KUKLA G J,PORTER S C,et al.Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years[J].Quaternary Research,1991,36(1):29-36. [19] 刘东生.黄土与环境[M].北京:科学出版社,1985:62-81.[LIU D S.Loess and environment[M].Beijing:Science Press,1985:62-81.] [20] HUANG C C,PANG J L,SU H X,et al.The Ustic Isohumisol (Chernozem) distributed over the Chinese Loess Plateau:modern soil or palaeosol?[J].Geoderma,2009,150(3/4):344-358. [21] HUANG C C,JIA Y F,PANG J L,et al.Holocene colluviation and its implications for tracing human-induced soil erosion and redeposition on the piedmont loess lands of the Qinling Mountains,northern China[J].Geoderma,2006,136(3/4):838-851. [22] 邵晓华,汪永进,程海,等.全新世季风气候演化与干旱事件的湖北神农架石笋记录[J].科学通报,2006,51(1):80-86.[SHAO X H,WANG Y J,CHENG H,et al.Long-term trend and abrupt events of the Holocene Asian monsoon inferred from a stalagmite δ10O record from Shennongjia in Central China[J].Chinese Science Bulletin,2006,51(2):221-228.] [23] 谭亮成,蔡演军,安芷生,等.石笋氧同位素和微量元素记录的陕南地区4200~2000a B.P.高分辨率季风降雨变化[J].第四纪研究,2014,34(6):1238-1245.[TAN L C,CAI Y J,AN Z S,et al.High-resolution monsoon precipitation variations in southern Shaanxi,central China during 4200~2000a B.P.as revealed by speleothem δ18O and Sr/Ca records[J].Quaternary Sciences,2014,34(6):1238-1245.] [24] YANG D Y,YU G,XIE Y B,et al.Sedimentary records of large Holocene floods from the middle reaches of the Yellow River,China[J].Geomorphology,2000,33(1/2):73-88. [25] 沈玉昌.汉水河谷的地貌及其发育史[J].地理学报,1956,22(4):295-322.[SHEN Y C.Geomorphology of the Hanshui valley[J].Acta Geographica Sinica,1956,22(4):295-322.] [26] US Army Corps of Engineers HEC.HEC-RAS river analysis system hydraulic reference manual[M].California,USA,2010. [27] SHEFFER N A,RICO M,ENZEL Y,et al.The Palaeoflood record of the Gardon River,France:a comparison with the extreme 2002 flood event[J].Geomorphology,2008,98(1/2):71-83. [28] JACOBY Y,GRODEK T,ENZEL Y,et al.Late Holocene upper bounds of flood magnitudes and twentieth century large floods in the ungauged,hyperarid alluvial Nahal Arava,Israel[J].Geomorphology,2008,95(3/4):274-294. [29] 武汉水利电力学院水力学教研室.水力学[M].北京:高等教育出版社,1986:335-336.[Wuhan Institute of Hydraulic and Electric Engineering,Hydraulics Teaching and Research Section.Hydraulics[M].Beijing:Higher Education Press,1986:335-336.] [30] CHOW V T.Open-channel hydraulics[M].McGraw-Hill Book Company,Inc.,1959. |
[1] | 张文桐, 庞奖励, 周亚利, 黄春长, 查小春, 崔天宇. 湖北郧西县庹家湾剖面粒度组成特征及其环境意义[J]. 长江流域资源与环境, 2016, 25(12): 1910-1916. |
[2] | 易凤佳, 李仁东, 常变蓉, 施媛媛, 邱娟. 2000~2010年汉江流域湿地动态变化及其空间趋向性[J]. 长江流域资源与环境, 2016, 25(09): 1412-1420. |
[3] | 李丹, 郭生练, 洪兴骏, 郭靖. 汉江流域1960~2014年降雨极值时空变化特征[J]. 长江流域资源与环境, 2016, 25(09): 1448-1456. |
[4] | 崔天宇, 庞奖励, 黄春长, 查小春, 周亚利, 张文桐. 汉江上游风成谷地黄土的重矿物组成特征及意义[J]. 长江流域资源与环境, 2016, 25(06): 943-951. |
[5] | 史超, 夏军, 佘敦先, 万蕙, 黄金凤. 气候变化下汉江上游林地植被生态需水量的时空演变[J]. 长江流域资源与环境, 2016, 25(04): 580-589. |
[6] | 李小燕, 王志杰. 汉江源土壤流失状况及生态效益测评[J]. 长江流域资源与环境, 2016, 25(04): 671-678. |
[7] | 吴帅虎, 庞奖励, 程和琴, 黄春长, 查小春, 杨建超. 汉江辽瓦店全新世黄土-古土壤序列风化过程及古洪水事件记录[J]. 长江流域资源与环境, 2015, 24(05): 846-852. |
[8] | 夏智宏, 周月华, 许红梅. 基于SWAT模型的汉江流域水资源对气候变化的响应[J]. 长江流域资源与环境, 2010, 19(2): 158-. |
[9] | 李思悦 刘文治 顾胜 韩鸿印 张全发. null[J]. 长江流域资源与环境, 2009, 18(3): 275-280. |
[10] | 史方方, 黄, 薇. 丹江口水库对汉江中下游影响的生态学分析[J]. 长江流域资源与环境, 2009, 18(10): 954-. |
[11] | 陆国宾, 刘轶, 邹响林, 邹振华, 蔡涛. 丹江口水库对汉江中下游径流特性的影响[J]. 长江流域资源与环境, 2009, 18(10): 959-. |
[12] | 窦 明,谢 平,姚堡垒,李桂秋. 中线调水对汉江下游枯水期的水安全影响研究[J]. 长江流域资源与环境, 2008, 17(5): 699-699. |
[13] | 胡安焱,郭生练. 汉江下游水污染协同控制探讨[J]. 长江流域资源与环境, 2007, 16(2): 213-213. |
[14] | 史威,朱诚,王富葆,田晓四,. 渝东峡江区全新世环境考古与环境变迁研究现状[J]. 长江流域资源与环境, 2007, 16(2): 222-222. |
[15] | 吕东亮. 汉江水质优于长江的原因刍议[J]. 长江流域资源与环境, 2006, 15(Sup1): 102-104. |
|