长江流域资源与环境 >> 2016, Vol. 25 >> Issue (04): 560-566.doi: 10.11870/cjlyzyyhj201604004

• 自然资源 • 上一篇    下一篇

近期长江口南港河槽沉积地貌变异及其可能原因

朱强1, 杨世伦1, 孟翊1, 杨海飞1, 吴创收2, 史本伟3   

  1. 1. 华东师范大学河口海岸学国家重点实验室, 上海 200062;
    2. 浙江省水利河口研究院, 浙江 杭州 310020;
    3. 南京大学海岸与海岛开发教育部重点实验室, 江苏 南京 210093
  • 收稿日期:2015-07-19 修回日期:2015-09-22 出版日期:2016-04-20
  • 通讯作者: 杨世伦, 孟翊 E-mail:slyang@sklec.ecnu.edu.cn;ymeng@sklec.ecnu.edu.cn
  • 作者简介:朱强(1991~),男,硕士研究生,主要从事海岸带管理方面研究.E-mail:18301757538@163.com
  • 基金资助:
    上海市科委项目(10dz210505);国家自然科学基金重点项目(41130856)

VARIATIONS AND CAUSES OF SEDIMENTATION CHARACTERISTIC IN SOUTH CHANNEL OF YANGTZE ESTUARY

ZHU Qiang1, YANG Shi-lun1, MENG Yi1, YANG Hai-fei1, WU Chuang-shou2, SHI Ben-wei3   

  1. 1. State Key Lab of Estuarine & Coastal Research, East China Normal University, Shanghai 200062, China;
    2. Zhejiang Institute of Hydraulics & Estuary, Hangzhou 310020, China;
    3. Key of Laboratory for Coast and Island Development, Ministry of Education, Nanjing University, Nanjing 210093, China
  • Received:2015-07-19 Revised:2015-09-22 Online:2016-04-20
  • Supported by:
    Science and Technology Commission of Shanghai Municipality (10dz210505); the State Key Program of National Natural Science Foundation of China (41130856)

摘要: 南港是长江口两个主要入海通道之一,也是长江深水航道的必经之路。基于2012和1984年的地形资料,利用ArcGIS技术对南港进行冲淤分析;并用同一种方法(筛析法-移液管)对相应年份所采表层沉积物样品进行粒径测试对比。结果表明:近28年来南港地形发生了重大变化,复式河槽间的沙脊因刷深而趋于消亡,主航槽则淤浅数米;沉积物中值粒径均值从81 μm下降为24 μm,特别是原沙脊位置上的沉积物从砂变细为砂质粉砂或粘土质粉砂。分析认为,采砂是上述变化的主要原因:沙脊采砂使复式河槽“中脊”消失,水动力减弱,河槽中央过水断面增大、分流增多,两侧航槽流速减小导致淤浅;沉积物变细是较粗颗粒被采走、动力减弱和淤积发生的综合结果。

关键词: 长江口, 南港, 筛析法-移液管法, 河槽演变, 沉积物粒径, 采砂

Abstract: The South channel is one of the two major entrances of Yangtze River into the sea, and the necessary passage of the North deep-water navigation channel. In this paper, we collected the topographic maps and 12 sediment samples from 1984 and 2012, and compared the grain size of riverbed surficial sediment using the same method (sieve and pipette analysis) of the two years. The erosion and/or deposition of the two year was analyzed by using the ArcGIS software. The results showed that there was a major geomophological change in the South Channel during the past 28 years. Sand ridges in compound channels were dying out due to sediment erosion, whereas the main channel tended to be shallow to several meters due to siltation at the same time. Moreover, the median grain size of surficial sediment decreased from 81 μm to 24 μm, especially the sediment type on the original ridge changed from sand to sandy silt, even clayey silt. We determined that sand extraction mainly caused these changes in South channel because this activity led to the extinction of mid-ridges in the compound channels, weakened hydrodynamic environment, and amplified the area of the crossing-section. Siltation on both sides of the channel arose due to lessening in flow velocity. The sediment size became finer depending on combination of coarse sediment dredging, weakening current and slitting in the channel.

Key words: the South Channel, topographic maps, sieve and pipette analysis, surficial sediment, sand extraction, sediment fining

中图分类号: 

  • TV882.2
[1] 毛野, 黄才安. 采砂对河床变形影响的试验研究[J]. 水利学报, 2004(5): 63-69. [MAO Y, HUANG C A. Experimental study on effect of sand mining on riverbed deformation[J]. Journal of Hydraulic Engineering, 2004(5): 63-69.]
[2] 陈来华. 大规模采砂对椒江河口段河床的影响及对策[J]. 海洋学研究, 2007, 25(2): 63-73. [CHEN L H. Affection and countermeasures on river bed of Jiaojiang River Estuary reach for large scaled exploiting sand[J]. Journal of Marine Science, 2007, 25(2): 63-73.]
[3] 刘桂平, 徐华, 毕军芳. 长江口江苏段江砂开采及对河道影响分析[J]. 人民长江, 2014, 45(S2): 193-196.
[4] 李文全. 长江中下游采砂对航道演变及整治工程影响研究[D]. 武汉: 武汉大学硕士学位论文, 2004: 32. [LI W Q. On the effects of the channel change and regulation of channel that dredging sand at the middle and lower section of the Yangtze River[D]. Wuhan: Master Dissertation of Wuhan University, 2004: 32.]
[5] 吴华林, 沈焕庭, 茅志昌. 长江口南北港泥沙冲淤定量分析及河道演变[J]. 泥沙研究, 2004(3): 75-80. [WU H L, SHEN H T, MAO Z C. Calculation of the amount of silation and erosion in the South and North channel in the Changjiang estuary and its evolution[J]. Journal of Sediment Research, 2004(3): 75-80.]
[6] 李鹏, 杨世伦, 杜景龙, 等. 长江口外高桥新港区岸段河槽冲淤GIS分析[J]. 地理与地理信息科学, 2005, 21(4): 24-27. [LI P, YANG S L, DU J L, et al. A study of erosion-siltation in the reach of Waigaoqiao new harbor, south channel, Yangtze estuary, based on GIS techniques[J]. Geography and Geo-Information Science, 2005, 21(4): 24-27.]
[7] 闫龙浩, 杨世伦, 李鹏, 等. 近期(2000-2008年)长江口南港河槽的冲淤变化--兼议外高桥新港区岸段强烈淤积的原因[J]. 海洋通报, 2010, 29(4): 378-384. [YAN L H, YANG S L, LI P, et al. The change of the amount of accretion/erosion of the South Channel at the Yangtze Estuary from 2000 to 2008: moreover demonstrate the strong accretion in Waigaoqiao new harbor[J]. Marine Science Bulletin, 2010, 29(4): 378-384.]
[8] 国家海洋局. GB/T 12763. 8-2007海洋调查规范第8部分: 海洋地质地球物理调查[S]. 北京: 中国标准出版社, 2008. [State Oceanic Administration. GB/T 12763. 8-2007 Specifications for oceanographic survey-Part 8: marine geology and geophysics survey[S]. Beijing: China Standards Press, 2008.]
[9] FOLK R L, WARD W C. Brazos River Bar: a study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 27(1): 3-26.
[10] SHEPARD F P. Nomenclature Based on Sand-silt-clay Ratios[J]. Journal of Sedimentary Petrology, 1954, 24(3): 151-158.
[11] YANG S L, MILLIMAN J D, LI P, et al. 50, 000 dams later: erosion of the Yangtze River and its delta[J]. Global and Planetary Change, 2011, 75(1/2): 14-20.
[12] LUO X X, YANG S L, ZHANG J. The impact of the Three Gorges Dam on the downstream distribution and texture of sediments along the middle and lower Yangtze River (Changjiang) and its estuary, and subsequent sediment dispersal in the East China Sea[J]. Geomorphology, 2012, 179: 126-140.
[13] DAI Z J, LIU J T, WEI W, et al. Detection of the Three Gorges Dam influence on the Changjiang (Yangtze River) submerged delta[J]. Scientific Reports, 2014, 4: 6600.
[14] 杨世伦. 长江大通以下流域对入海水沙通量贡献的探讨[J]. 人民长江, 2013, 44(3): 13-15, 54. [YANG S L. Discussion on contribution of water and sediment fluxes to sea from sub-catchment below Datong Station of Yangtze River[J]. Yangtze River, 2013, 44(3): 13-15, 54.]
[15] 恽才兴. 长江河口近期演变基本规律[M]. 北京: 海洋出版社, 2004.
[16] 万正松, 闵凤阳, 张志林, 等. 长江口南支分流分沙比观测与分析[J]. 南京大学学报(自然科学). 2009, 45(3): 416-423. [WAN Z S, MIN F Y, ZHANG Z L, et al. Observations and analyses of the water and sediment discharge ratios in the southern branch, Changjiang Estuary[J]. Journal of Nanjing University (Natural Sciences), 2009, 45(3): 416-423.]
[17] 王如生, 杨世伦, 罗向欣, 等. 近30年长江北支口门附近的冲淤演变及其对人类活动的响应[J]. 华东师范大学学报(自然科学版), 2015(4): 34-41. [WANG R S, YANG S L, LUO X X, et al. Morphological evolution and its response to human activities at the mouth area of the North Branch, Yangtze estuary, during the recent three decades[J]. Journal of East China Normal University (Natural Science), 2015(4): 34-41.]
[18] YANG S L, BELKIN I M, BELKINA A I, et al. Delta response to decline in sediment supply from the Yangtze River: evidence of the recent four decades and expectations for the next half-century[J]. Estuarine, Coastal and Shelf Science, 2003, 57(4): 689-699.
[19] WU C S, YANG S L, LEI Y P. Quantifying the anthropogenic and climatic impacts on water discharge and sediment load in the Pearl River (Zhujiang), China (1954-2009)[J]. Journal of Hydrology, 2012, 452-453: 190-204.
[20] 赵德招, 刘杰, 张俊勇, 等. 新情势下长江口泥沙资源的供需关系及优化配置初探[J]. 泥沙研究, 2011(6): 69-74. [ZHAO D Z, LIU J, ZHANG J Y, et al. Primary investigation on supply-demand relationship and optimal allocation of sediment resources in Yangtze Estuary under new situation[J]. Journal of Sediment Research, 2011(6): 69-74.]
[21] 李文正. 长江口南港瑞丰沙整治工程对周边河势的影响[J]. 水利水运工程学报, 2014(4): 87-92. [LI W Z. Analysis of impacts of Ruifengsha regulation works in south channel of Yangtze River estuary on surrounding river regime[J]. Hydro-Science and Engineering, 2014(4): 87-92.]
[22] 李茂田, 程和琴, 周丰年, 等. 长江河口南港采砂对河床稳定性的影响[J]. 海洋测绘, 2011, 31(1): 50-53. [LI M T, CHENG H Q, ZHOU F N, et al. The effect of sand digging to bedfrom stability of the Nangang channel in the Changjiang River Mouth[J]. Hydrographic Surveying and Charting, 2011, 31(1): 50-53.]
[23] 朱慧芳, 恽才兴, 茅志昌, 等. 长江河口的风浪特性和风浪经验关系[J]. 华东师范大学学报(自然科学版), 1984(1): 74-84. [ZHU H F, YUN C X, MAO Z C, et al. Characteristics and empiric relationships of wind generated wave in the Changjiang Estuary[J]. Journal of East China Normal University (Natural Science), 1984(1): 74-84.]
[1] 杨志, 龚云, 董纯, 唐会元, 乔晔. 黑水河下游鱼类资源现状及其保护措施[J]. 长江流域资源与环境, 2017, 26(06): 847-855.
[2] 张钊, 李占海, 张国安, 王智罡, 姚俊. 长江口南槽中段枯季水沙输运特征研究[J]. 长江流域资源与环境, 2016, 25(12): 1832-1841.
[3] 张俊勇, 赵德招. 长江口南港北槽河床底质时空分布特征分析[J]. 长江流域资源与环境, 2016, 25(10): 1520-1527.
[4] 赵敏, 张丽旭. 长江口海域表层沉积物环境质量的综合评价[J]. 长江流域资源与环境, 2016, 25(02): 284-291.
[5] 栾青杉, 孙军. 2005年秋季长江口及其邻近水域浮游植物群集[J]. 长江流域资源与环境, 2010, 19(2): 202-.
[6] 张涛, 庄平, 章龙珍, 刘健, 王云龙, 侯俊利, 刘鉴毅, 冯广朋, 赵峰, 黄晓荣, 闫文罡. 长江口中华鲟自然保护区及临近水域鱼类种类组成现状[J]. 长江流域资源与环境, 2010, 19(04): 370-.
[7] 陈沈良,严肃庄,李玉中. 长江口及其邻近海域表层沉积物分布特征[J]. 长江流域资源与环境, 2009, 18(2): 152-.
[8] 赵 健, 毕春娟, 陈振楼. 长江口潮滩沉积物中活性重金属的空间分异及控制机制[J]. 长江流域资源与环境, 2009, 18(11): 1020-.
[9] 陶 涛, 信昆仑, 刘遂庆. 气候变化下21世纪上海长江口地区降水变化趋势分析[J]. 长江流域资源与环境, 2008, 17(2): 223-223.
[10] 欧冬妮,刘 敏,程书波,许世远,侯立军,高 磊. 河口滨岸悬浮颗粒物中多环芳烃分布与风险评价[J]. 长江流域资源与环境, 2007, 16(5): 620-620.
[11] 王 军,陈振楼,许世远. 长江口滨岸带生态环境质量评价指标体系与评价模型[J]. 长江流域资源与环境, 2006, 15(5): 659-664.
[12] 仲阳康,周 慧,施文彧,周 晓,周立晨,王天厚. 上海滩涂春季鸻形目鸟类群落及围垦后生境选择[J]. 长江流域资源与环境, 2006, 15(3): 378-383.
[13] 程 江,何 青,王元叶,刘 红,夏小明. 长江河口细颗粒泥沙絮凝体粒径的谱分析[J]. 长江流域资源与环境, 2005, 14(4): 460-464.
[14] 徐兆礼,沈新强. 长江口水域浮游动物生物量及其年间变化[J]. 长江流域资源与环境, 2005, 14(3): 282-286.
[15] 丁振华,刘彩娥,汤庆合,王文华,庄敏. 长江口及邻近海域环境污染影响研究的必要性——以汞污染为例[J]. 长江流域资源与环境, 2005, 14(2): 204-207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[2] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[3] 金晓斌,易理强,王慎敏,周寅康. 基于协调发展视角的区域发展差异研究[J]. 长江流域资源与环境, 2008, 17(4): 511 .
[4] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[5] 黄 峰 魏 浪 李 磊 朱 伟. 乌江干流中上游水电梯级开发水温累积效应[J]. 长江流域资源与环境, 2009, 18(4): 337 .
[6] 胡鸿兴, 张岩岩, 何伟, 田蓉, 钟鑫, 韩世松, 李思思, 王俊杰陈文方, 杨阳, 陈侈, 邓晗, 文英, 崔雅婷, 李茜,  王璇, 彭菁菁, 高鑫, 唐义. 神农架大九湖泥炭藓沼泽湿地对镉(Ⅱ)、铜(Ⅱ)、铅(Ⅱ)、锌(Ⅱ)的净化模拟[J]. 长江流域资源与环境, 2009, 18(11): 1050 .
[7] 蔡海生, 肖复明, 张学玲. 基于生态足迹变化的鄱阳湖自然保护区生态补偿定量分析[J]. 长江流域资源与环境, 2010, 19(06): 623 .
[8] 王月容, 周金星, 周志翔, 孙启祥. 洞庭湖退田还湖区不同土地利用方式对土壤养分库的影响[J]. 长江流域资源与环境, 2010, 19(06): 634 .
[9] 段金荣, 张红燕, 刘凯, 徐东坡, 张敏莹, 施炜纲. 湖泊的宜渔性评价研究——以蠡湖为例[J]. 长江流域资源与环境, 2010, 19(06): 666 .
[10] 余真真, 王玲玲, 戴会超, 成高峰. 三峡水库香溪河库湾水温分布特性研究[J]. 长江流域资源与环境, 2011, 20(1): 84 .