长江流域资源与环境 >> 2016, Vol. 25 >> Issue (05): 813-821.doi: 10.11870/cjlyzyyhj201605015

• 生态环境 • 上一篇    下一篇

基于地面监测数据的2013~2015年长三角地区PM2.5时空特征

戴昭鑫1,2, 张云芝1,3, 胡云锋1, 董昱1,2   

  1. 1. 中国科学院地理科学与资源研究所, 北京 100101;
    2. 中国科学院大学, 北京 100049;
    3. 内蒙古师范大学, 内蒙古 呼和浩特 010022
  • 收稿日期:2015-09-10 修回日期:2015-12-29 出版日期:2016-05-20
  • 通讯作者: 胡云锋 E-mail:huyf@lreis.ac.cn
  • 作者简介:戴昭鑫(1993~),女,博士研究生,主要研究方向为环境遥感分析.E-mail:daizx.156@cgsnrr.ac.cn
  • 基金资助:
    国家重大专项项目;高分国家主体功能区遥感监测评价应用示范系统(一期)(00-Y30B14-9001-14/16)

SPATIAL-TEMPORAL CHARACTERISTICS OF PM 2.5 IN YANGTZE RIVER DELTA (YRD) REGION BASED ON THE GROUND MONITORING DATA FROM 2013-2015

DAI Zhao-xin1,2, ZHANG Yun-zhi1,3, HU Yun-feng1, DONG Yu1,2   

  1. 1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Inner Mongolia Normal University, Hohehot Municipality 010022, China
  • Received:2015-09-10 Revised:2015-12-29 Online:2016-05-20
  • Supported by:
    National Science and Technology Major Project of the Ministry of Science and Technology of China;The Monitor and Evaluation Application System of the National PrincipalFunction Region Based on High Resolution Remote Sensing(a)(00-Y30B14-9001-14/16)

摘要: 近年来,长三角地区灰霾天气持续增多,空气细颗粒物污染问题日益突出。基于2013年1月至2015年5月长三角地区及周边缓冲区内共214个空气质量监测站点PM2.5逐时监测数据,运用普通克里金插值方法,从年、季、月尺度上分析了PM2.5的空间分布格局和时间动态变化。结果表明:(1)2 a来,长三角地区PM2.5浓度空间分布明显呈现整体北部高南部低,局部地区略有突出的分布特征;长三角地区PM2.5浓度年均值为57.08μg/m3;其中,江苏省PM2.5的年均值为三省市最高,为65.84μg/m3;其次为上海市,年均值为53.87μg/m3;浙江省PM2.5的年均值较小,为51.53μg/m3。(2)从季节尺度分析,长三角地区PM2.5浓度变化表现出冬春季高,夏秋季低的变化趋势;这与区域内冬季风向来源、降水稀少、气象扩散条件差有着密切的关系; (3)长三角地区月浓度变化大致呈U形分布; 12月份PM2.5浓度最高; 3月份以后, PM2.5浓度开始呈逐步下降趋势;在5~9月份,区域PM2.5处于"U"字的谷底,其中6月份夏收时期秸秆焚烧、气象等因素导致PM2.5浓度有略微升高;进入10月份后迅速攀升,且11、12月份呈现持续升高态势。

关键词: PM2.5浓度, 地面监测, 空间分布, 时间动态变化, 长三角

Abstract: As one of the three economic hubs in China, the Yangtze River Delta (YRD) experiences serious air pollution due to the huge energy consumption in recent years. The air pollution in this region became more and more serious with increasingly frequent haze. The main pollution source is respirable particulate matters (PM2.5). Based on this, data of PM2.5 from 214 automatic air quality monitoring stations of YRD and surrounding buffer regions from January 2013 to May 2015 were analyzed to examine the temporal and spatial characteristics of PM2.5 at year, season, month scales. Using Ordinary Kriging interpolation method, we found that (1) The distribution of PM2.5 concentration was obvious in the YRD region and displayed high values in the north and low values in the south. The annual average concentrations of PM2.5 was 57.08 μg·m-3 in the YRD region. From a regional perspective, the annual average concentrations of PM2.5 in different sub-regions decreased in the order of Jiangsu province, Shanghai Municipality and Zhejiang province, which were 65.84μg·m-3, 47.31μg·m-3 and 51.53 μg·m-3, respectively. The average concentrations of PM2.5 in this three regions all exceeded the national ambient air quality standard of 35 μg·m-3. The main reason may be related with the regional industrial structure, regional agricultural pollution, meteorological characteristics and etc. (2) The average concentration of PM2.5 in different seasons decreased in the order of winter, spring, autumn and summer, which were 82.73 μg/m-3,54.02 μg/m-3, 49.71 μg/m-3 and 41.72 μg/m-3, respectively. The main reasons caused the obvious differences in seasons were the atmosphere conditions (air mass source, precipitation, etc.), human activities and the condition of natural ecosystems. For example, in winter more stable atmosphere, high frequency and intensity temperature inversion were not conducive to pollution dilution. But in summer more plants grow and flourish, this was conducive to the adsorption of particulate matter in the atmosphere; secondly, the precipitation increase in summer can also conducive to the wet deposition and dilution of atmospheric pollutants; therefore, the concentration of PM2.5 was the lowest in summer relatively.(3) Monthly average concentrations of PM2.5 showed a U-shaped curve; the peaks of which appeared in December; after March, the average concentration of PM2.5 showed a gradual decline; In 5-9 months, the average concentration of PM2.5 in the bottom of U-shaped curve and reached to the minimum in September; but in June, the average concentration of PM2.5 concentrations increased slightly because of the straw burning; in October the average concentrations of PM2.5 rose rapidly and continued to rise in November and December. In this study, the result based on the method of GIS spatial interpolation may cause a few errors; the achievements based on the space statistical method may not represent the real phenomenon completely. But overall, the spatial interpolation method based on GIS provided the way to understand the spatial distribution characteristics of regional PM2.5; the spatial statistical method based on GIS provided the basic data and material science for the discrimination of regional PM2.5 concentration level. This paper has important practical significance for the remote sensing of atmospheric pollutants, product validation and local governments to carry out environment management decision-making and so on.

Key words: the concentrations of PM2.5, ground monitoring, spacedistribution, temporal dynamics, Yangtze River Delta region

中图分类号: 

  • X513
[1] 赵晨曦, 王云琦, 王玉杰, 等. 北京地区冬春PM2.5和PM10水平时空分布及其与气象条件的关系[J]. 环境科学, 2014, 35(2):418-427. [ZHAO C X, WANG Y Q, WANG Y J, et al. Temporal and spatial distribution of PM2.5 and PM10 pollution status and the correlation of particulate matters and meteorological factors during winter and spring in Beijing[J]. Environmental Science, 2014, 35(2):418-427.]
[2] 孙志豪, 崔燕平. PM2.5对人体健康影响研究概述[J]. 环境科技, 2013, 26(4):75-78. [SUN Z H, CUI Y P. An overview of PM2.5 impacts on human health[J]. Environmental Science and Technology, 2013, 26(4):75-78.]
[3] HUANG D S, XU J H, ZHANG S Q. Valuing the health risks of particulate air pollution in the Pearl River Delta, China[J]. Environmental Science & Policy, 2012, 15(1):38-47.
[4] 任阵海, 万本太, 苏福庆, 等. 当前我国大气环境质量的几个特征[J]. 环境科学研究, 2004, 17(1):1-6. [REN Z H, WAN B T, SU F Q, et al. Several characteristics of atmospheric environmental quality in China at present[J]. Research of Environmental Science, 2004, 17(1):1-6.]
[5] 肖致美, 毕晓辉, 冯银厂, 等. 宁波市环境空气中PM10和PM2.5来源解析[J]. 环境科学研究, 2012, 25(5):549-555. [XIAO Z M, BI X H, FENG Y G, et al. Source apportionment of ambient PM10 and PM2.5 in Urban Area of Ningbo City[J]. Research of Environmental Sciences, 2012, 25(5):549-555.]
[6] WANG J, HU Z M, CHEN Y Y, et al. Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China[J]. Atmospheric Environment, 2013, 68:221-229.
[7] 宋宇, 唐孝炎, 方晨, 等. 北京市能见度下降与颗粒物污染的关系[J]. 环境科学学报, 2003, 23(4):468-471. [SONG Y, TANG X Y, FANG C, et al. Relationship between the visibility degradation and particle pollution in Beijing[J]. Acta Scientiae Circumstantiae, 2003, 23(4):468-471.]
[8] 李莉, 陈长虹, 黄成, 等. 长江三角洲地区大气O3和PM10的区域污染特征模拟[J]. 环境科学, 2008, 29(1):237-245. [LI L, CHEN C H, HUANG C, et al. Regional air pollution characteristics simulation of O3 and PM10 over Yangtze River Delta region[J]. Environmental Science, 2008, 29(1):237-245.]
[9] 杨复沫, 贺克斌, 马永亮, 等. 北京PM2.5浓度的变化特征及其与PM10、TSP的关系[J]. 中国环境科学, 2002, 22(6):506-510. [YANG F M, HE K B, MA Y L, et al. Variation characteristics of PM2.5 concentration and its relationship with PM10 and TSP in Beijing[J]. China Environmental Science, 2002, 22(6):506-510.]
[10] 杨复沫, 贺克斌, 马永亮, 等. 北京市大气PM2.5中矿物成分的污染特征[J]. 环境科学, 2004, 25(5):26-30. [YANG F M, HE K B, MA Y L, et al. Characteristics of mineral component in ambient PM2.5 in Beijing[J]. Environmental Science, 2004, 25(5):26-30.]
[11] 于建华, 虞统, 魏强, 等. 北京地区PM10和PM2.5质量浓度的变化特征[J]. 环境科学研究, 2004, 17(1):45-47. [YU J H, YU T, WEI Q, et al. Characteristics of mass concentration variations of PM10 and PM2.5 in Beijing area[J]. Research of Environmental Science, 2004, 17(1):45-47.]
[12] 郭建平, 吴业荣, 张小曳, 等. BP网络框架下MODIS气溶胶光学厚度产品估算中国东部PM2.5[J]. 环境科学, 2013, 34(3):817-825. [GUO J P, WU Y R, ZHANG X Y, et al. Estimation of PM2.5 over Eastern China from MODIS aerosol optical depth using the back propagation neural network[J]. Environmental Science, 2013, 34(3):817-825.]
[13] 王晶杰, 李琦, 冯逍, 等. 京津冀地区污染过程的气溶胶遥感反演[J]. 测绘科学, 2015, 40(2):78-83. [WANG J J, LI Q, FENG X, et al. Study of aerosol retrieval using remote sensing data during air pollution events over Jing-Jin-Ji area[J]. Science of Surveying and Mapping, 2015, 40(2):78-83.]
[14] 徐祥德, 施晓晖, 张胜军, 等. 北京及周边城市群落气溶胶影响域及其相关气候效应[J]. 科学通报, 2005, 50(22):2522-2530. [XU X D, SHI X H, ZHANG S J, et al. Aerosol influence domain of Beijing and peripheral city agglomeration and its climatic effect[J]. Chinese Science Bulletin, 2006, 51(16):2016-2026.]
[15] 程真, 陈长虹, 黄成, 等. 长三角区域城市间一次污染跨界影响[J]. 环境科学学报, 2011, 31(4):686-694. [CHENG Z, CHEN C H, HUANG C, et al. Trans-boundary primary air pollution between cities in the Yangtze River Delta[J]. Acta Scientiae Circumstantiae, 2011, 31(4):686-694.]
[16] 丁铭, 郁建桥, 程真, 等. 南京市PM2.5颗粒物来源探析[J]. 环境科技, 2014, 27(4):23-26. [DING M, YU J Q, CHENG Z, et al. Analysis of PM2.5 ambient particulars emission source of Nanjing[J]. Environmental Science and Technology, 2014, 27(4):23-26.]
[17] 魏玉香, 银燕, 杨卫芬, 等. 南京地区PM2.5污染特征及其影响因素分析[J]. 环境科学与管理, 2009, 34(9):29-34. [WEI Y X, YIN Y, YANG W F, et al. Analysis of the polution characteristics & influence factors of PM2.5 in Nanjing area[J]. Environmental Science and Management, 2009, 34(9):29-34.]
[18] 成亚利, 王波. 上海市PM2.5的时空分布特征及污染评估[J]. 计算机与应用化学, 2014, 31(10):1189-1192. [CHENG Y L, WANG B. Temporal and spatial distribution and contamination assessment of PM2.5 in Shanghai[J]. Computers and Applied Chemistry, 2009, 31(10):1189-1192.]
[19] 周敏, 陈长虹, 王红丽, 等. 上海市秋季典型大气高污染过程中颗粒物的化学组成变化特征[J]. 环境科学学报, 2012, 32(1):81-92. [ZHOU M, CHEN C H, WANG H L, et al. Chemical characteristics of particulate matters during air pollution episodes in autumn of Shanghai, China[J]. Acta Scientiae Circumstantiae, 2012, 32(1):81-92.]
[20] 包贞, 冯银厂, 焦荔, 等. 杭州市大气PM2.5和PM10污染特征及来源解析[J]. 中国环境监测, 2010, 26(2):44-48. [BAO Z, FENG Y C, JIAO L, et al. Characterization and source apportionment of PM2.5 and PM10 in Hangzhou[J]. Environmental Monitoring in China, 2010, 26(2):44-48.]
[21] 黄金星, 张林, 陈欢林, 等. 杭州市区空气中PM2.5细微粒监测及污染状况分析[J]. 环境科学与技术, 2006, 26(9):49-51. [HUANG J X, ZHANG L, CHEN H L, et al. Monitoring of PM2.5 related air pollution in Hangzhou city[J]. Environmental Science & Technology, 2006, 26(9):49-51.]
[22] 王占山, 李云婷, 陈添, 等. 2013年北京市PM2.5的时空分布[J]. 地理学报, 2015, 70(1):110-120. [WANG Z S, LI Y T, CHEN T, et al. Spatial-temporal characteristics of PM2.5 in Beijing in 2013[J]. Acta Geographica Sinica, 2015(01):110-120.]
[23] 潘耀忠, 龚道溢, 邓磊, 等. 基于DEM的中国陆地多年平均温度插值方法[J]. 地理学报, 2004, 59(3):366-374. [PAN Y Z, GONG D Y, DENG L, et al. Smart distance searching-based and DEM-informed interpolation of surface air temperature in China[J]. Acta Geographica Sinica, 2004, 59(3):366-374.]
[24] 晏星, 马小龙, 赵文慧. 基于不同插值方法的PM1污染物浓度研究[J]. 测绘, 2010, 33(4):172-175. [YAN X, MA X L, ZHAO W H. Research on the PM1 pollutant concentration based on different interpolation method[J]. Surveying and Mapping, 2010, 33(4):172-175.]
[25] CATTLE J A, MCBRATNEY A B, MINASNY B. Kriging method evaluation for assessing the spatial distribution of urban soil lead contamination[J]. Journal of Environmental Quality, 2002, 31(5):1576-1588.
[26] WANG X J, ZHENG Y, LIU R M, et al. Kriging and PAH pollution assessment in the topsoil of Tianjin area[J]. Bulletin of Environmental Contamination and Toxicology, 2003, 71(1):189-195.
[27] 姜成晟, 王劲峰, 曹志冬. 地理空间抽样理论研究综述[J]. 地理学报, 2009, 64(3):368-380. [JIANG C S, WANG J F, CAO Z D. A review of Geo-spatial sampling theory[J]. Acta Geographica Sinica, 2009, 64(3):368-380.]
[28] 林忠辉, 莫兴国, 李宏轩, 等. 中国陆地区域气象要素的空间插值[J]. 地理学报, 2002, 57(1):47-56. [LIN Z H, MO X G, LI H X, et al. Comparison of three spatial interpolation methods for climate variables in China[J]. Acta Geographica Sinica, 2002, 57(1):47-56.]
[29] 徐建辉, 江洪. 长江三角洲PM2.5质量浓度遥感估算与时空分布特征[J]. 环境科学, 2015, 36(9):3119-3127. [XU J H, JIANG H. Estimation of PM2.5 concentration over the Yangtze Delta using Remote Sensing:Analysis of spatial and temporal variations[J]. Environmental Science, 2015, 36(9):3119-3127.]
[30] SILLMAN S, LOGAN J A, WOFSY S C. The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes[J]. Jouurnal of Geophysical Research, 1990, 95(D2):1837-1851.
[31] SUN Y L, ZHUANG G S, WANG Y, et al. The air-borne particulate pollution in Beijing-concentration, composition, distribution and sources[J]. Atmospheric Environment, 2004, 38(35):5991-6004.
[32] XU X D, SHI X H, XIE L A, et al. Spatial character of the gaseous and particulate state compound correlation of urban atmospheric pollution in winter and summer[J]. Science in China (Series D:Earth Sciences), 2005, 48(S2):64-79.
[33] 陈媛, 岑况, NORRA S, 等. 北京市区大气气溶胶PM2.5污染特征及颗粒物溯源与追踪分析[J]. 现代地质, 2010, 24(2):345-354. [CHEN Y, CEN K, NORRA S, et al. Study on pollution characteristics of PM2.5 in the aerosol, tracing and tracking atmospheric particulates in Beijing city[J]. Geoscience, 2010, 24(2):345-354.]
[34] 李珊珊, 程念亮, 徐峻, 等. 2014年京津冀地区PM2.5浓度时空分布及来源模拟[J]. 中国环境科学, 2015, 35(10):2908-2916. [LI S S, CHENG N L, XU J, et al. Spatial and temporal distrubions and source simulation of PM2.5 in Beijing-Tianjin-Hebei region in 2014[J]. China Environmental Science, 2015, 35(10):2908-2916.]
[35] 韩婷, 黄志萍,徐军科. 长三角地区在霾天气特征分析反防冷对策研究[J]. 环境科学与管理, 2014(1):94-97. [HAN T, HUANG Z P, XU J K. Analysist characteristic of atmospheric haze Yangtze River Delta and countermeasure[J]. Environment Science and Management 2014(1):94-97.]
[36] 王跃思, 姚利, 王莉莉, 等. 2013年元月我国中东部地区强霾污染成因分析[J]. 中国科学:地球科学, 2014, 44(1):15-26. [WANG Y S, YAO L, WANG L L, et al. Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China[J]. Science China Earth Sciences, 2014, 44(1):15-26.]
[37] 杨洪斌, 邹旭东, 汪宏宇, 等. 大气环境中PM2.5的研究进展与展望[J]. 气象与环境学报, 2012, 28(3):77-82. [YANG H B, ZOU X D, WANG H Y, et al. Study progress on PM2.5 in atmospheric environment[J]. Journal of Meteorology and Environment, 2012, 28(3):77-82.]
[1] 陈优良, 陶天慧, 丁鹏. 长江三角洲城市群空气质量时空分布特征[J]. 长江流域资源与环境, 2017, 26(05): 687-697.
[2] 刘燕, 王业成, 王让会, 刘圆, 袁琦菲, 李成. 南京浦口区大气负离子的时空特征及其与气象条件的关系[J]. 长江流域资源与环境, 2017, 26(05): 706-712.
[3] 高金龙, 陈雯. 转型期中国城市用地结构动态演变及其机理——基于长三角51个样本城市的实证研究[J]. 长江流域资源与环境, 2017, 26(04): 540-551.
[4] 庄汝龙, 宓科娜, 陈阳, 赵彪. 长三角地区社会福利与经济增长耦合协调时空分异[J]. 长江流域资源与环境, 2017, 26(02): 171-179.
[5] 毛婉柳, 徐建华, 卢德彬, 杨东阳, 赵佳楠. 2015年长三角地区城市PM2.5时空格局及影响因素分析[J]. 长江流域资源与环境, 2017, 26(02): 264-272.
[6] 李嬛, 宁越敏, 魏也华, 陈斐然. 长江经济带沿江城市群空间分布格局与联动机理研究[J]. 长江流域资源与环境, 2016, 25(12): 1797-1806.
[7] 彭霞, 郭冰瑶, 魏宁, 佘倩楠, 刘敏, 象伟宁. 近60 a长三角地区极端高温事件变化特征及其对城市化的响应[J]. 长江流域资源与环境, 2016, 25(12): 1917-1926.
[8] 周艺, 徐晨娜, 王世新, 朱金峰, 吴亮, 王利双. 丝绸之路经济带中国段后备可利用水土资源空间分布格局研究[J]. 长江流域资源与环境, 2016, 25(09): 1328-1338.
[9] 柯新利, 李红艳, 刘荣霞. 武汉市耕地景观游憩功能与可达性的空间匹配格局[J]. 长江流域资源与环境, 2016, 25(05): 751-760.
[10] 徐建霞, 彭刚志, 王建柱. 三峡库区香溪河消落带植被多样性及分布格局研究[J]. 长江流域资源与环境, 2015, 24(08): 1345-1350.
[11] 杨芳, 潘晨, 贾文晓, 刘敏, 义白璐, 象伟宁. 长三角地区生态环境与城市化发展的区域分异性研究[J]. 长江流域资源与环境, 2015, 24(07): 1094-1101.
[12] 袁文德, 郑江坤. 1962~2012年西南地区极端温度事件时空变化特征[J]. 长江流域资源与环境, 2015, 24(07): 1246-1254.
[13] 张荣天, 焦华富. 泛长江三角洲地区经济发展与生态环境耦合协调关系分析[J]. 长江流域资源与环境, 2015, 24(05): 719-727.
[14] 罗, 俊| 王克林, 陈洪松, 张, 伟. 桂西北喀斯特地区水土流失敏感性评价[J]. 长江流域资源与环境, 2009, 18(6): 579-.
[15] 刘蓓蓓, 李凤英, 俞钦钦, 于洋, 毕军. 长江三角洲城市间环境公平性研究[J]. 长江流域资源与环境, 2009, 18(12): 1093-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 聂钠, 于坤香. 我国世界自然遗产地旅游业环境经济核算思路[J]. 长江流域资源与环境, 2009, 18(2): 121 .
[2] 曹银贵,王 静,程 烨,刘爱霞,许 宁,郝 银,饶彩霞. 三峡库区土地利用变化与影响因子分析[J]. 长江流域资源与环境, 2007, 16(6): 748 .
[3] 徐俊杰, 何 青, 刘 红, 陈吉余. 2006年长江特枯径流特征及其原因初探[J]. 长江流域资源与环境, 2008, 17(5): 716 .
[4] 游庆龙. 三江源地区1961~2005年气温极端事件变化[J]. 长江流域资源与环境, 2008, 17(2): 232 .
[5] 吴炳方,罗治敏. 基于遥感信息的流域生态系统健康评价——以大宁河流域为例[J]. 长江流域资源与环境, 2007, 16(1): 102 -106 .
[6] 郝红升,李克锋,李然,赵再兴. 取水口高程对过渡型水库水温分布结构的影响[J]. 长江流域资源与环境, 2007, 16(1): 21 -25 .
[7] 刘承良, 田 颖, 梁 滨,5. 武汉城市圈产业经济的系统性分析[J]. 长江流域资源与环境, 2009, 18(1): 1 .
[8] 伍新木,廖 丹,严 瑾. 制度创新:依托武汉建设长江中游城市群[J]. 长江流域资源与环境, 2004, 13(1): 1 -6 .
[9] 李翀,廖文根,彭静,叶柏生. 宜昌站1900~2004年生态水文特征变化[J]. 长江流域资源与环境, 2007, 16(1): 76 -80 .
[10] 张心怡,刘 敏,孟 飞. 基于RS和GIS的上海城建用地扩展研究[J]. 长江流域资源与环境, 2006, 15(1): 29 -33 .