长江流域资源与环境 >> 2016, Vol. 25 >> Issue (05): 851-858.doi: 10.11870/cjlyzyyhj201605020

• 生态环境 • 上一篇    

湖北侧长江三峡河谷地形对风速的影响

张雪婷1,2, 陈正洪1,2, 孙朋杰1,2, 许杨1,2   

  1. 1. 湖北省气象服务中心, 湖北 武汉 430205;
    2. 湖北省气象能源技术开发中心, 湖北 武汉 430205
  • 收稿日期:2015-08-24 修回日期:2015-11-24 出版日期:2016-05-20
  • 通讯作者: 陈正洪 E-mail:chenzh64@126.com
  • 作者简介:张雪婷(1984~),女,工程师,硕士,主要研究方向为气候可行性论证.E-mail:zhangxt_l_w@163.com
  • 基金资助:
    行业专项(GYHY201306023、GYHY201206013);三峡工程生态环境监测项目(JJ2015-005);大渡河气候影响项目(PBG-QT-2013-026);宜昌香溪长江公路大桥——桥位气候背景和风参数研究

THE EFFECT OF TERRAIN ON WIND SPEED IN YANGTZE THREE GORGES VALLEY IN HUBEI

ZHANG Xue-ting1,2, CHEN Zheng-hong1,2, SUN Peng-jie1,2, XU Yang1,2   

  1. 1. Hubei Meteorological Service Center, Wuhan 430205, China;
    2. Meteorological Energy development center of Hubei Province, Wuhan 430205, China
  • Received:2015-08-24 Revised:2015-11-24 Online:2016-05-20
  • Supported by:
    Scientific Research Fund of Meteorological Public Welfare (GYHY201306023、GYHY201206013);Ecological environment monitoring project of the Three GorgesProject(JJ2015-005);Project of Climate Impact of Daduhe(PBG-QT-2013-026);Research of Climate Background and Wind Parameters of Yangtze River Highway Bridge of Xiangxi

摘要: 选取地处长江三峡河谷(湖北侧)的香溪长江公路大桥桥位区(郭家坝站)附近沿江3个气象站、6个自动站多年的风速、风向资料进行对比分析,讨论了峡谷对河谷内不同区域风速的不同影响。结果表明:在水平方向上,烟墩堡、郭家坝、庙堡等临江3站平均风速偏大、最大风速及极大风速出现大值频次偏高,狭管效应明显,其余非临江站则受局地地形遮蔽影响平均风速偏小、最大风速及极大风速出现大值频率偏低;在垂直方向上, 150 m以下风速几乎没有明显的高度变化,实测风廓线指数几乎为0;桥位处阵风性强,阵风系数为1.56。

关键词: 河谷地形, 狭管效应, 阵风系数, 风廓线指数

Abstract: We select three meteorological stations and six automatic weather stations which are located along the three gorges valley (in Hubei Province) nearby Xiangxi Yangtze River Highway Bridge (Guojiaba meteorological station). We collected wind speed and wind direction data for comparative analysis, and analyzed the different influence of wind speed in different regions of the valley. The results showed that, in the horizontal direction, the three automatic weather stations of Yandunbao, Guojiaba and Miaobao are near the river, presenting an obvious funnel effect, where average wind speeds are larger, and the frequencies of high-value of maximum wind speed and extreme wind speed increase. The rest of stations located not near the river are affected by the local terrain where average wind speeds are smaller, maximum wind speed and extreme wind speed in large frequency are low; In the vertical direction, the wind speed under 150 meters not change in height, the measured wind-profiling index is approximately zero; At the location of bridge, the value of gust factor is 1.56 where gustiness is strong.

Key words: Valley terrain, funnelling, gust factor, wind-profiling index

[1] 田刚, 袁杰, 罗剑琴, 等. MM5模式在三峡工程大风预报中的应用及检验分析[J]. 暴雨灾害, 2009, 28(2):168-172. [TIAN G, YUAN J, LUO J Q, et al. Application of mesoscale model to strong wind forecast in Three Gorges Project Area[J]. Torrential Rain and Disasters, 2009, 28(2):168-172.]
[2] 李兰, 周月华, 陈波. 湖北省大风灾害及其风险度[J]. 气象科技, 2009, 37(2):205-208. [LI L, ZHOU Y H, CHEN B. Wind disasters in Hubei Province and their risk degree[J]. Meteorological Science and Technology, 2009, 37(2):205-208.]
[3] 何明琼, 祁东平, 汪应琼, 等. 三峡-葛洲坝区域雷雨大风的卫星云图识别模式[J]. 贵州气象, 2010, 34(S):7-11.
[4] 傅抱璞. 河谷內的风速[J]. 气象学报, 1963, 33(4):518-526. [FU B P. The wind speed in valley[J]. Acta Meteorologica Sinica, 1963, 33(4):518-526.]
[5] 傅抱璞.山地气候[M].北京:科学出版社,1983:150-203.
[6] 沈晶, 赖旭. 峡谷地形条件下风电场风况数值模拟研究[J]. 水电能源科技, 2011, 29(8):167-171. [SHEN J, LAI X. Numerical simulation of wind flow of wind farm under valley terrain environment[J]. Water Resources and Power, 2011, 29(8):167-171.]
[7] 傅抱璞, 虞静明, 卢其尧. 山地气候资源与开发利用[M]. 南京:南京大学出版社, 1996:182-245.
[8] 陈明, 傅抱璞. 山区谷地环流型的数值研究[J]. 环境科学研究, 1996, 9(3):14-18. [CHEN M, FU B P. A numerical study of circulation in mountain valley[J]. Research of Environmental Sciences, 1996, 9(3):14-18.]
[9] 余锦华, 傅抱璞. 山谷地形对盛行气流影响的数值模拟[J]. 气象学报, 1995, 53(1):50-61. [YU J H, FU B P. Numerical simulation of the airflow over and in valley terrain[J]. Acta Meteorologica Sinica, 1995, 53(1):50-61.]
[10] 庞加斌, 宋锦忠, 林志兴. 山区峡谷桥梁抗风设计风速的确定方法[J]. 中国公路学报, 2008, 21(5):39-44. [PANG J B, SONG J Z, LIN Z X. Determination method for wind-resistant design wind speed of mountainous-valley bridge[J]. China Journal of Highway and Transport, 2008, 21(5):39-44.]
[1] 史军, 穆海振, 徐家良, 马悦. 上海近海海域低层风特性分析[J]. 长江流域资源与环境, 2016, 25(08): 1184-1190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曾 群, 蔡述明. 武汉市水资源可持续利用评价[J]. 长江流域资源与环境, 2005, 14(4): 429 -434 .
[2] 蔡邦成,陆根法,宋莉娟,陈克亮. 南水北调东线水源地保护区生态建设的生态经济效益评估[J]. 长江流域资源与环境, 2006, 15(3): 384 -387 .
[3] 陈西庆,吕溪溪,严以新,童朝锋,窦希萍, 李键庸,田 磊. 长江河口上边界床沙粒径的长期变化及其原因[J]. 长江流域资源与环境, 2008, 17(4): 598 .
[4] 莫宏伟, 任志远, 谢红霞. 东南丘陵土地利用变化及驱动力研究——以衡阳市为例[J]. 长江流域资源与环境, 2004, 13(6): 551 -556 .
[5] 蒋天文,樊志宏. 大江大河从“公共资源”到“公地悲剧”演变的内在机理分析[J]. 长江流域资源与环境, 2006, 15(3): 315 -319 .
[6] 刘 渝, 杜 江, 张俊飚. 中国农业用水与经济增长的Kuznets假说及验证[J]. 长江流域资源与环境, 2008, 17(4): 593 .
[7] 王 茜, 张增祥, 易 玲, 谭文彬, 王长友. 南京城市扩展的遥感研究[J]. 长江流域资源与环境, 2007, 16(5): 554 .
[8] 夏自强. 河流健康研究进展与前瞻[J]. 长江流域资源与环境, 2008, 17(2): 252 .
[9] 孙晓霞,张继贤,刘正军. 三峡库区土地利用时序变化遥感监测与分析[J]. 长江流域资源与环境, 2008, 17(4): 557 .
[10] 张丽旭,蒋晓山,赵 敏,李志恩. 长江口洋山海域表层沉积物重金属的富积及其潜在生态风险评价[J]. 长江流域资源与环境, 2007, 16(3): 351 .