长江流域资源与环境 >> 2016, Vol. 25 >> Issue (06): 943-951.doi: 10.11870/cjlyzyyhj201606010

• 生态环境 • 上一篇    下一篇

汉江上游风成谷地黄土的重矿物组成特征及意义

崔天宇, 庞奖励, 黄春长, 查小春, 周亚利, 张文桐   

  1. 陕西师范大学旅游与环境学院, 陕西 西安 710062
  • 收稿日期:2015-09-29 修回日期:2015-12-18 出版日期:2016-06-20
  • 通讯作者: 庞奖励 E-mail:jlpang@snnu.edu.cn
  • 作者简介:崔天宇(1991~),男,硕士,主要研究方向为资源开发与环境演变.E-mail:1151998520@qq.com.
  • 基金资助:
    国家自然科学基金资助项目(41271108,41371029);国家社会科学基金项目(14BZS070);中央高校基本科研费(编号GK201301003)

HEAVY MINERAL COMPOSITION CHARACTERISTICS AND SIGNIFICANCE OF LOESS IN THE UPPER HAN JIANG RIVER VALLEY

CUI Tian-yu, PANG Jiang-li, HUANG Chun-chang, ZHA Xiao-chun, ZHOU Ya-li, ZHANG Wen-tong   

  1. College of Tourism and Environment, Shaanxi Normal University, Xi'an 710062, China
  • Received:2015-09-29 Revised:2015-12-18 Online:2016-06-20
  • Supported by:
    National Natural Science Foundation of China (Grant No.41271108, 41371029);National Social Science Foundation of China(Grant No.14BZS070);National Higher-education Institution General Research and Development Funding (No.GK201301003)

摘要: 汉江流域位于黄土高原南侧,属中国南北气候的过渡区域,其重矿物组成对区域沉积物物质来源与演化研究具有重要意义。运用强磁选、重液分离法等技术手段将汉江上游谷地黄土沉积物中的重矿物提取出来,在双目显微镜和偏光显微镜下测定其含量和特征。结果表明:(1)汉江黄土重矿物有22种,其中角闪石、磁铁矿、钛铁矿等矿物为优势矿物,占重矿物总量的60%以上;稳定矿物约占重矿物总量的47.95%,是汉江黄土最主要的矿物组合。(2)典型黄土和古土壤中重矿物种类相同,但含量有一定差异,马兰黄土(L1)相较古土壤(S0)不稳定矿物含量较高,稳定矿物含量较低;(3)汉江黄土与北侧黄土高原黄土相比重矿物种类相似,稳定性组合分布一致,但汉江黄土稳定性矿物含量较高,不稳定性矿物含量较低。这些特征说明:(1)汉江上游地区古土壤和黄土物质来源一致,古土壤S0在物质组成上继承了黄土,是黄土高度风化的产物;(2)汉江谷地黄土和黄土高原风成黄土两者的物源区一致,但汉江地区黄土受到较黄土高原地区强的风化成壤作用。

关键词: 重矿物, 组成特征, 风化过程, 物源, 汉江谷地

Abstract: By the analysis on the heavy mineral in eolian loess in the upper Han Jiang river valley, we get many characteristics of the heavy mineral. There are more than 20 kinds, including opaque minerals such as hornblende, magnetite, ilmenite etc. They are the advantageous minerals, accounting for 60% of all. The stable minerals are 47.95% of the total heavy mineral, which are the main mineral in loess on Hanjiang River. The kinds of heavy minerals in Hanjiang are similar to that in the Loess Plateau. They are resembled to the stability, indicating the same resource between them. However, the content of stable minerals is relatively high and that of instable minerals is relatively low. The reason is that the distance between the Hanjiang River and the main sourced regions are higher than that between Loess Plateau and the sourced regions. It resulted in the difficult reservation of the instable minerals because of the wet climate. The mineral compositions in different stratigraphy of the loess profile in the upper Hanjiang River are same, indicating the same resource in loess and palaeosol in the late Pleistocene, and the composed materials in the S0 succeed to that of L1 and different content between each other. There are higher content of instable minerals in L1 than that of S0 but relatively low in the stable minerals. The surface of the minerals is fresh and clean, and the clay is relatively less than that in palaeosol. The instable minerals were made into clay minerals because of the strongly weathering and pedogenesis during the formation of palaeosol.

Key words: heavy mineral, composition characteristics, weathering process, sediments provenance, upper Hanjiang River Valley

中图分类号: 

  • P531
[1] 刘东生, 卢演俦, 郑洪汉. 黄土与环境[M]. 北京: 科学出版社, 1985: 1-481. [LIU D S, LU Y C, ZHENG H H. Loess and Environment[M]. Beijing: Science Press, 1985: 1-481.]
[2] 唐克丽, 贺秀斌. 黄土高原全新世黄土-古土壤演替及气候演变的再研讨[J]. 第四纪研究, 2004, 24(2): 129-139. [TANG K L, HE X B. Re-discussion on loess-paleosol evolution and climatic change on the Loess Plateau during the Holocene[J]. Quaternary Sciences, 2004, 24(2): 129-139.]
[3] 李徐生, 杨达源, 鹿化煜. 镇江下蜀黄土粒度特征及其成因初探[J]. 海洋地质与第四纪地质, 2001, 21(1): 25-32. [LI X S, YANG D Y, LU H Y. Grain-size features and genesis of the Xiashu Loess in Zhenjiang[J]. Marine Geology & Qua-ternary Geology, 2001, 21(1): 25-32.]
[4] 文启忠. 中国黄土地球化学[M]. 北京: 科学出版社, 1989: 23-63. [WEN Q Z. Geochemistry in Chinese Loess[M]. Beijing: Science Press, 1989: 23-63.]
[5] 李徐生, 韩志勇, 杨守业, 等. 镇江下蜀土剖面的化学风化强度与元素迁移特征[J]. 地理学报, 2007, 62(11): 1174-1184. [LI X S, HAN Z Y, YANG S Y, et al. Chemical weathering intensity and element migration features of the Xiashu loess profile in Zhenjiang, Jiangsu Province[J]. Acta Geographica Sinica, 2007, 62(11): 1174-1184.]
[6] 黄春长. 渭河流域全新世黄土与环境变迁[J]. 地理研究, 1989, 8(1): 20-31. [HUANG C C. The loess and environmental changes of Holocene in the Weihe river basin[J]. Geographical Research, 1989, 8(1): 20-31.]
[7] 庞奖励, 黄春长, 张占平. 陕西岐山黄土剖面Rb、Sr组成与高分辩率气候变化[J]. 沉积学报, 2001, 19(4): 548-552. [PANG J L, HUANG C C, ZHANG Z P. Rb、Sr elements and high resolution climatic records in the loess-paleosol profile at Qishan, Shannxi[J]. Acta Sedimentologica Sinica, 2001, 19(4): 548-552.]
[8] 陈宝群, 黄春长, 李平华. 陕西扶风黄土台塬全新世成壤环境变化研究[J]. 中国沙漠, 2004, 24(2): 149-152. [CHEN B Q, HUANG C C, LI P H. Holocene pedogensis and environmental change on the Loess tableland in Fufeng County, Shaanxi province[J]. Journal of Desert Research, 2004, 24(2): 149-152.]
[9] 乔彦松, 赵志中, 王 燕, 等. 川西甘孜黄土-古土壤序列的地球化学演化特征及其古气候意义[J]. 科学通报, 2010, 55(3): 255-260. [QIAO Y S, ZHAO Z Z, WANG Y, et al. Variations of geochemical compositions and the paleoclimatic significance of a loess-soil sequence from Garzê county of western Sichuan Province, China[J]. Chinese Science Bulletin, 2009, 54(24): 4697-4703.]
[10] 郭正堂, 刘东生, FEDOROFF N, 等. 约0. 85Ma前后黄土高原区季风强度的变化[J]. 科学通报, 1993, 38(2): 143-146. [GUO Z T, LIU D S, FEDOROFF N, et al. Shift of monsoon intensity on the Loess Plateau at ca. 0. 85 Ma BP[J]. Chinese Science Bulletin, 1993, 38(7): 586-591.]
[11] 鹿化煜, 安芷生. 洛川黄土粒度组成的古气候意义[J]. 科学通报, 1997, 42(1): 66-69. [LU H Y, AN Z S. Pretreated methods on loess-palaeosol samples granulometry[J]. Chinese Science Bulletin, 1998, 43(3): 237-240.]
[12] 陈骏, 季峻峰, 仇 纲, 等. 陕西洛川黄土化学风化程度的地球化学研究[J]. 中国科学(D辑), 1997, 27(6): 531-536. [CHEN J, JI J F, QIU G, et al. Geochemical studies on the intensity of chemical weathering in Luochuan loess-paleosol sequence, China[J]. Science in China Series D: Earth Sciences, 1998, 41(3): 235-241.]
[13] 郭媛媛, 莫多闻, 毛龙江, 等. 澧阳平原岩板垱剖面地球化学特征与风化强度研究[J]. 地理科学, 2013, 33(3): 335-341. [GUO Y Y, MO D W, MAO L J, et al. Geochemical characteristics and weathering intensity of the Yanbandang profile in Liyang plain, the middle Reach of the Changjiang river[J]. Scientia Geographica Sinica, 2013, 33(3): 335-341.]
[14] GARZANTI E, VEZZOLI G, ANDòS, et al. Quantifying sand provenance and erosion (Marsyandi River, Nepal Himalaya)[J]. Earth and Planetary Science Letters, 2007, 258(3/4): 500-515.
[15] NESBITT H W, MARKOVICS G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(8): 1653-1670.
[16] NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
[17] CHEN J, AN Z S, LIU L W, et al. Variations in chemical compositions of the eolian dust in Chinese Loess Plateau over the past 2. 5 Ma and chemical weathering in the Asian inland[J]. Science in China Series D: Earth Sciences, 2001, 44(5): 403-413.
[18] 魏兰英. 马兰黄土中重矿物的研究[J]. 第四纪研究, 1985, 7(1): 49-56. [WEI L Y. Theresearch ofmineralin Malan loess[J]. Quaternary Sciences, 1985, 7(1): 49-56.]
[19] 陈国英, 陈发虎. 兰州九洲台黄土剖面重矿物研究[J]. 兰州大学学报(自然科学版), 1993, 29(4): 257-267. [CHEN G Y, CHEN F H. A study on heavy mineral compositions of Jiuzhoutai loess profile, Lanzhou[J]. Journal of Lanzhou University (Natural Sciences), 1993, 29(4): 257-267.]
[20] 雷祥义. 秦岭凤州黄土研究[J]. 陕西地质, 1998, 16(2): 45-57. [LEI X Y. Research for the loess in Fengzhou, Qinling mountain[J]. Geology of Shaanxi, 1998, 16(2): 45-57.]
[21] 黄培华, 李文森. 湖北郧县曲远河口的地貌、第四纪地层和埋藏环境[J]. 江汉考古, 1995(4): 83-86. [HUANG P H, LI W S. Landscape, Quaternary strata and buried environment at estuary of the Quyuan River in Yunxian County, Hubei Province[J]. Jianghan Archaeology, 1995(4): 83-86.]
[22] 鹿化煜, 张红艳, 王社江, 等. 东秦岭南洛河上游黄土地层年代的初步研究及其在旧石器考古中的意义[J]. 第四纪研究, 2007, 27(4): 559-567. [LU H Y, ZHANG H Y, WANG S J, et al. A preliminary survey on loess deposit in eastern Qinling Mountains (central China) and its implication for estimating age of the Pleistocene lithic artifacts[J]. Quaternary Sciences, 2007, 27(4): 559-567.]
[23] 张 翔, 张 扬, 陈晓丹, 等. 汉江上游流域产水产沙时空规律研究[J]. 南水北调与水利科技, 2008, 6(4): 71-74. [ZHANG X, ZHANG Y, CHEN X D, et al. Spatial-temporal distribution of runoff generating and sediment yield in Hanjiang River Basin[J]. South-to-North Water Transfers and Water Science & Technology, 2008, 6(4): 71-74.]
[24] 丘华昌. 试论鄂北豫西南黄褐土的某些发生学特征[J]. 华中农学院学报, 1984(4): 46-57. [QIU H C. A discussion on some genetic properties of the Yellow cinnamon soil in north Hubei and Southwest Henan province[J]. Journal of Huazhong Agricultural College, 1984(4): 46-57.]
[25] 张俊民, 龚子同, 陈志诚, 等. 湖北省过渡带的土壤类型[J]. 土壤, 1989, 21(2): 91-97. [ZHANG J M, GONG Z T, CHEN Z C, et al. Soil type of transition zone in Hubei province[J]. Soils, 1989, 21(2): 91-97. ]
[26] 彭祖厚. 陕西省安康专区的黄泥巴[J]. 土壤通报, 1962(5): 30-36. [PENG Z H. Yellow mud of Ankang, Shannxi[J]. Chinese Journal of Soil Science, 1962(5): 30-36.]
[27] 李鼎新, 赵庚申. 陕西境内汉江流域黄泥巴及其改良[J]. 土壤, 1961(9): 46-54. [LI D X, ZHAO G S. The yellow mud and its improvement in the Hanjiang river basin, Shannxi[J]. Soils, 1961(9): 46-54.]
[28] 庞奖励, 黄春长, 周亚利, 等. 汉江上游谷地全新世风成黄土及其成壤改造特征[J]. 地理学报, 2011, 66(11): 1562-1573. [PANG J L, HUANG C C, ZHOU Y L, et al. Holocene aeolian loess and its pedogenic modification in the Upper Hanjiang River Valley, China[J]. Acta Geographica Sinica, 2011, 66(11): 1562-1573.]
[29] 延军平, 郑 宇. 秦岭南北地区环境变化响应比较研究[J]. 地理研究, 2001, 20(5): 576-582. [YAN J P, ZHENG Y. A comparative study on environmental change response over the northern and the southern regions of the Qinling Mountains[J]. Geographical Research, 2001, 20(5): 576-582.]
[30] 殷淑燕, 王海燕, 王德丽, 等. 陕南汉江上游历史洪水灾害与气候变化[J]. 干旱区研究, 2010, 27(4): 522-527. [YIN S Y, WANG H Y, WANG D L, et al. Study on historical flood disasters and climate change in the upper reaches of the Hanjiang River[J]. Arid Zone Research, 2010, 27(4): 522-527.]
[31] 朱震达. 汉江上游丹江口至白河间的河谷地貌[J]. 地理学报, 1955, 21(3): 259-270. [ZHU Z D. The valley form of the upper Han river, from Pai-Ho to Tan-Chiang-Kou[J]. Acta Geographica Sinica, 1955, 21(3): 259-270.]
[32] 王中波, 杨守业, 李萍, 等. 长江水系沉积物碎屑矿物组成及其示踪意义[J]. 沉积学报, 2006, 24(4): 570-578. [WANG Z B, YANG S Y, LI P, et al. Detrital mineral compositions of the Changjiang River sediments and their tracing implications[J]. Acta Sedimentologica Sinica, 2006, 24(4): 570-578.]
[33] 林晓彤, 李巍然, 时振波. 黄河物源碎屑沉积物的重矿物特征[J]. 海洋地质与第四纪地质, 2003, 23(3): 17-21. [LIN X T, LI W R, SHI Z B. Characteristics of mineralogy in the clastic sediments from the Yellow River provenance, China[J]. Marine Geology & Quaternary Geology, 2003, 23(3): 17-21.]
[34] 任雪梅, 杨达源, 韩志勇. 长江上游水系变迁的河流阶地证据[J]. 第四纪研究, 2006, 26(3): 413-420. [REN X M, YANG D Y, HAN Z Y. Terrace evidence of river system change in the upper reaches of Changjiang River[J]. Quaternary Sciences, 2006, 26(3): 413-420.]
[35] 曾河清. 黄河中游黄土的碎屑矿物和结构研究[J]. 第四纪研究, 1965, 4(1): 47-61. [ZENG H Q. The detrital minerals and the structure of loess in the middle reaches of the Yellow River[J]. Quaternary Sciences, 1965, 4(1): 47-61.]
[36] 贺秀斌, 唐克丽, 雷祥义. 黄土高原全新世黄土重矿物研究及其土壤发生学意义[J]. 地理科学, 1996, 16(2): 159-163. [HE X B, TANG K L, LEI X Y. Analysis of heavy minerals of Holocene loess on loess plateau and its aspects of pedogenesis[J]. Scientia Geographica Sinica, 1996, 16(2): 159-163.]
[37] 雷祥义. 秦岭黄土的粒度分析及其成因初步探讨[J]. 地质学报, 1998, 72(2): 178-188. [LEI X Y. Grain-Size analysis and genesis of loess in the Qinling Mountains[J]. Acta Geologica Sinica, 1998, 72(2): 178-188.]
[38] 卞鸿雁, 庞奖励, 黄春长, 等. 汉江上游谷地与渭河谷地黄土化学风化程度比较[J]. 地理研究, 2014, 33(4): 654-664. [BIAN H Y, PANG J L, HUANG C C, et al. A comparative study of chemical weathering intensity and element transport features of loess-palaeosol in the upper reaches of Hanjiang and Weihe river valleys, China[J]. Geographical Research, 2014, 33(4): 654-664.]
[1] 王彬俨, 严冬春, 文安邦, 陈佳村. 三峡水库干流消落带沉积泥沙粒径特征及其物源意义[J]. 长江流域资源与环境, 2016, 25(09): 1421-1429.
[2] 张亚男, 甘义群, 李小倩, 刘运德, 于凯, 张彬. 2013年长江丰水期河水化学特征及控制因素[J]. 长江流域资源与环境, 2016, 25(04): 645-654.
[3] 任雪梅,徐永辉,周 彬,杨达源. 宜宾—重庆段川江高阶地物质来源的定量分析——判别分析在重矿物分析中的应用[J]. 长江流域资源与环境, 2006, 15(3): 330-334.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 罗专溪,张 远,郑丙辉,富 国,陆兆华. 三峡水库蓄水初期水生态环境特征分析[J]. 长江流域资源与环境, 2005, 14(6): 781 -784 .
[2] 王玉蓉,李嘉| 李克锋,芮建良. 雅砻江锦屏二级水电站减水河段生态需水量研究[J]. 长江流域资源与环境, 2007, 16(1): 81 -85 .
[3] 王宜虎. 江苏沿江各市工业绿色化程度的模糊评价[J]. 长江流域资源与环境, 2008, 17(2): 170 .
[4] 陈 诚,陈 雯 . 盐城市沿海的适宜开发空间选择研究[J]. 长江流域资源与环境, 2008, 17(5): 667 .
[5] 吴 威,曹有挥,曹卫东,徐 建,王 玥,. 区域高速公路网络构建对可达性空间格局的影响——以安徽沿江地区为实证 [J]. 长江流域资源与环境, 2007, 16(6): 726 .
[6] 李晓文,方精云,朴世龙. 上海城市土地利用形成、变化及其空间作用机制[J]. 长江流域资源与环境, 2006, 15(1): 34 -40 .
[7] 李加林,许继琴,童亿勤,杨晓平,张殿发. 杭州湾南岸滨海平原土地利用/覆被空间格局变化分析[J]. 长江流域资源与环境, 2005, 14(6): 709 -713 .
[8] 李玉辉,李忠德,张丹丹,李兆林 ,周顺吉. 石林风景名胜区对乡村经济发展的影响[J]. 长江流域资源与环境, 2004, 13(1): 18 -23 .
[9] 黄真理. 国内外大型水电工程生态环境监测与保护[J]. 长江流域资源与环境, 2004, 13(2): 101 -108 .
[10] 杨志荣,吴次芳, 靳相木, 姚秋萍. 基于DEA模型的城市用地经济效益比较研究[J]. 长江流域资源与环境, 2009, 18(1): 14 .