长江流域资源与环境 >> 2016, Vol. 25 >> Issue (04): 645-654.doi: 10.11870/cjlyzyyhj201604015

• 生态环境 • 上一篇    下一篇

2013年长江丰水期河水化学特征及控制因素

张亚男1,2, 甘义群1,2, 李小倩1,2, 刘运德2, 于凯1,2, 张彬1,2   

  1. 1. 中国地质大学(武汉)环境学院, 湖北 武汉 430074;
    2. 中国地质大学生物地质与环境地质国家重点实验室, 湖北 武汉 430074
  • 收稿日期:2015-06-19 修回日期:2015-07-23 出版日期:2016-04-20
  • 通讯作者: 甘义群 E-mail:yiqungan@cug.edu.cn
  • 作者简介:张亚男(1992~),女,硕士研究生,主要从事水文地质、环境地质、同位素水文学方面研究.E-mail:zhangyanan0811@sina.cn
  • 基金资助:
    国家自然科学基金项目“高砷地下水系统中溶解性有机质来源的稳定碳氧同位素解析”(41472217);中央高校基本科研业务费专项资金资助项目”地下水中高氯酸盐生物降解的同位素分馏机理”(CUGL140407)

WATER CHEMICAL CHARACTERISTICS AND CONTROLLING FACTORS OF THE YANGTZE RIVER IN THE WET SEASON, 2013

ZHANG Ya-nan1,2, GAN Yi-qun1,2, LI Xiao-qian1,2, LIU Yun-de2, YU Kai1,2, ZHANG Bin1,2   

  1. 1. China University of Geosciences, School of Environmental Studies, Wuhan 430074, China;
    2. China University of Geosciences, State Key LaboratoryBiogeology & Environment Geology, Wuhan 430074, China
  • Received:2015-06-19 Revised:2015-07-23 Online:2016-04-20
  • Supported by:
    the National Natural Science Foundation of China (41472217); the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan)(CUGL140407)

摘要: 为掌握长江河水化学组成特征及其控制因素,笔者运用Gibbs图、多种离子比例系数法和主成分分析法综合分析了长江流域丰水期河水化学及氢氧同位素特征。结果表明,长江丰水期河水主要来源为大气降水,河水化学类型主要为HCO3·SO4-Ca型,化学成分主要受流域内广泛分布的碳酸盐岩等岩石风化作用控制;河水pH值、HCO3-浓度沿长江径流方向降低,SO42-、Ca2+浓度沿长江径流方向升高。2013年丰水期,长江河水化学组成特征变化的主要影响因子,是易溶盐岩溶解和人类活动(贡献率40%),其次为川贵及长江三角洲地区的酸雨沉降以及人为酸性废水排放促进了流域内石灰岩和富含碳酸盐的三叠系砂页岩溶解(贡献率20%),最后为硅酸盐矿物及其风化产物的溶解(贡献率19%)。为了解长江河水水质状况及其演变趋势,合理评价长江流域水资源提供很好的科学依据。

关键词: 化学组成特征, 控制因素, 丰水期, 长江

Abstract: The Yangtze River, one of the longest rivers in China, plays an important role in the development of national economy. To understand chemical characteristics and its controlling factors of the Yangtze River, 42 samples were collected from the Yangtze River and its main tributaries during the period of high-discharge in July and August, 2013. The major ions of the water samples such as K+, Na+, Ca2+, Mg2+, HCO3-,SO42- and Cl- were analyzed, as well as hydrogen and oxygen isotopic compositions (δD and δ18O). The δD and δ18O values of the Yangtze River ranged from -106‰ to -31‰ and from -14.6‰ to -4.1‰, respectively, located around the local meteoric water line (LMWL), indicating that atmospheric precipitation is the main source of the river in the wet season. The chemical type of the Yangtze River was mainly represented as HCO3·SO4-Ca, associated with chemical weathering of carbonates distributing widely in the drainage basin. The median of the total dissolved solid was about 242 mg/L, three times of the world average level. The pH values and concentrations decreased from the upper reaches down to the lower reaches along the Yangtze River, whereas both SO42- and Ca2+ concentrations increased. The most significant factor controlling variation of the chemical composition of the Yangtze River, in wet season of 2013, was the dissolution of soluble salts contained in the surrounding rocks and the influence of human activities. The second potential affecting factor was chemical weathering dissolution of carbonate accelerated by acid rainwater in the upper Sichuan and Guizhou areas and the lower Yangtze River Delta and acid waste drainage by human activities. The dissolution of silicate minerals and associated weathering products was another possible affecting factor for chemical composition of the Yangtze River. The research can help better understand water quality and its evolution trend of the Yangtze River, and provide a scientific basis for assessment and management of water resources in the Yangtze River Basin.

Key words: chemical composition characteristics, controlling factors, wet season, Yangtze River Basin

中图分类号: 

  • P66
[1] YUAN X C, TANG B J, WEI Y M, et al. China's regional drought risk under climate change: a two-stage process assessment approach[J]. Natural Hazards, 2015, 76(1): 667-684.
[2] 陈静生, 王飞越, 夏星辉. 长江水质地球化学[J]. 地学前缘, 2006, 13(1): 74-85. [CHEN J S, WANG F Y, XIA X H. Geochemistry of water quality of the Yangtze River basin[J]. Earth Science Frontiers, 2006, 13(1): 74-85.]
[3] 刘瑞秋, 张水元. 长江中下游地区若干湖泊水质的多元分析与比较[J]. 水生生物学报, 2000, 24(5): 439-445. [LIU R Q, ZHANG S Y. Multivariable analyzing and comparing of water quality of shallow lakes in middle and lower reaches of Changjiang River[J]. Acta Hydrobiological Sinica, 2000, 24(5): 439-445.]
[4] 陈静生, 夏星辉, 张利田, 等. 长江、黄河、松花江60-80年代水质变化趋势与社会经济发展的关系[J]. 环境科学学报, 1999, 19(5): 500-505. [CHEN J S, XIA X H, ZHANG L T, et al. Relationship between water quality changes in the Yangtze, Yellow and Songhua Rivers and the economic development in the river basins[J]. Acta Scientiae Circumstantiae, 1999, 19(5): 500-505.]
[5] 薛武申, 孙兵, 刘培青. 长江源区水质分析及与长江武汉段水质对比[J]. 安全与环境工程, 2005, 12(1): 17-20. [XUE W S, SUN B, LIU P Q. Analysis of water quality in Changjiang river source area and its comparison with the water quality in Wuhan sector[J]. Safety and Environmental Engineering, 2005, 12(1): 17-20.]
[6] 胡春华, 周文斌. 鄱阳湖流域水化学环境参数的变化特征[J]. 长江流域资源与环境, 2014, 23(3): 427-433. [HU C H, ZHOU W B. Spatiotemporal variations of hydrochemistry parameters in the Poyang lake catchment[J]. Resources and Environment in the Yangtze Basin, 2014, 23(3): 427-433.]
[7] 万咸涛. 长江流域(片)水资源水质现状及特征[J]. 水电能源科学, 2006, 24(3): 1-5, 30. [WAN X T. Status quo and feature of water quality for water resources in Yangtze river valley[J]. Water Resources and Power, 2006, 24(3): 1-5, 30.]
[8] 范可旭, 张晶. 长江流域地表水水质演变趋势分析[J]. 人民长江, 2008, 39(17): 82-84. [FAN K X, ZHANG J. Analysis of evolution tendency of surface water quality in the Yangtze River Basin[J]. Yangtze River, 2008, 39(17): 82-84.]
[9] 范可旭, 徐长江, 张晶. 长江流域水资源质量评价[J]. 人民长江, 2011, 42(18): 62-64, 72. [FAN K X, XU C J, ZHANG J. Evaluation on quality of water resources in Yangtze River Basin[J]. Yangtze River, 2011, 42(18): 62-64, 72.]
[10] 王亚平, 王岚, 许春雪, 等. 长江水系水文地球化学特征及主要离子的化学成因[J]. 地质通报, 2010, 29(2/3): 446-456. [WANG Y P, WANG L, XU C X, et al. Hydro-geochemistry and genesis of major ions in the Yangtze River, China[J]. Geological Bulletin of China, 2010, 29(2/3): 446-456.]
[11] 丁悌平, 高建飞, 石国钰, 等. 长江水氢、氧同位素组成的时空变化及其环境意义[J]. 地质学报, 2013, 87(5): 661-676. [DING T P, GAO J F, SHI G Y, et al. Spacial and temporal variations of H and O isotope compositions of the Yangtze River water and their environmental implications[J]. Acta Geologica Sinica, 2013, 87(5): 661-676.]
[12] 沙晨燕, 何文珊, 童春富, 等. 上海近期酸雨变化特征及其化学组分分析[J]. 环境科学研究, 2007, 20(5): 31-34. [SHA C Y, HE W S, TONG C F, et al. Analysis on the variation of acidity and chemical compositions of rainwater in Shanghai[J]. Research of Environmental Sciences, 2007, 20(5): 31-34.]
[13] LI X D, LIU C Q, LIU X L, et al. Identification of dissolved sulfate sources and the role of sulfuric acid in carbonate weathering using dual-isotopic data from the Jialing River, Southwest China[J]. Journal of Asian Earth Sciences, 2011, 42(3): 370-380.
[14] LI S L, LIU C Q, PATRA S, et al. Using a dual isotopic approach to trace sources and mixing of sulphate in Changjiang Estuary, China[J]. Applied Geochemistry, 2011, 26(S): S210-S213.
[15] 杜耘, 陈萍, SATO K, 等. 洪湖水环境现状及主导因子分析[J]. 长江流域资源与环境, 2005, 14(4): 481-485. [DU Y, CHEN P, SATO K, et al. Current water environmental status and dominant factor analysis in Honghu lake[J]. Resources and Environment in the Yangtze Basin, 2005, 14(4): 481-485.]
[16] 李小倩, 刘运德, 周爱国, 等. 长江干流丰水期河水硫酸盐同位素组成特征及其来源解析[J]. 地球科学-中国地质大学学报, 2014, 39(11): 1547-1554, 1592. [LI X Q, LIU Y D, ZHOU A G, et al. Sulfur and oxygen isotope compositions of dissolved sulfate in the Yangtze river during high water period and its sulfate source tracing[J]. Earth Science-Journal of China University of Geosciences, 2014, 39(11): 1547-1554, 1592.]
[17] 王晓曦, 王文科, 王周锋, 等. 滦河下游河水及沿岸地下水水化学特征及其形成作用[J]. 水文地质工程地质, 2014, 41(1): 25-33, 73. [WANG X X, WANG W K, WANG Z F, et al. Hydrochemical characteristics and formation mechanism of river water and groundwater along the downstream Luanhe river, northeastern China[J]. Hydrogeology and Engineering Geology, 2014, 41(1): 25-33, 73.]
[18] UMAR R, ABSAR A. Chemical characteristics of groundwater in parts of the Gambhir River basin, Bharatpur District, Rajasthan, India[J]. Environmental Geology, 2003, 44(5): 535-544.
[19] 张海春, 胡雄星, 韩中豪. 黄浦江水系水质变化及原因分析[J]. 中国环境监测, 2013, 29(4): 55-59. [ZHANG H C, HU X X, HAN Z H. The research of the water quality change and cause of Huangpu River system[J]. Environmental Monitoring in China, 2013, 29(4): 55-59.]
[20] 沈照理. 水文地球化学基础(三)[M]. 北京: 地质出版社, 1993: 16-20. (请核对年份)
[21] 高建飞, 丁悌平, 罗续荣, 等. 黄河水氢、氧同位素组成的空间变化特征及其环境意义[J]. 地质学报, 2011, 85(4): 596-602. [GAO J F, DING T P, LUO X R, et al. δD and δ18O variations of water in the Yellow River and its environmental significance[J]. Acta Geologica Sinica, 2011, 85(4): 596-602.]
[22] KATTAN Z. Chemical and isotopic compositions of the Euphrates river water, Syria[M]//Monitoring Isotopes in Rivers: Creation of the Global Network of Isotopes in Rivers (GNIR). Vienna, Austria: International Atomic Energy Agency, 2012: 146-166.
[23] HOGAN J, PHILLIPS F, EASTOE C, et al. Isotopic tracing of hydrological processes and water quality along the upper Rio Grande, USA[M]//Monitoring Isotopes in Rivers: Creation of the Global Network of Isotopes in Rivers (GNIR). Vienna, Austria: International Atomic Energy Agency, 2012: 120-145.
[24] RANK D, PAPESCH W, HEISS G, et al. Environmental isotope ratios of river water in the Danube Basin[M]//Monitoring Isotopes in Rivers: Creation of the Global Network of Isotopes in Rivers (GNIR). Vienna, Austria: International Atomic Energy Agency, 2012: 22-40.
[25] 郑淑蕙, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报, 1983(13): 801-806.
[26] KENDALL C, COPLEN T B. Distribution of oxygen-18 and deuterium in river waters across the United States[J]. Hydrological Processes, 2001, 15(7): 1363-1393.
[27] DANSGAARD W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
[28] 陈新明, 甘义群, 刘运德, 等. 长江干流水体氢氧同位素空间分布特征[J]. 地质科技情报, 2011, 30(5): 110-114. [CHEN X M, GAN Y Q, LIU Y D, et al. Spatial distribution characteristics of Hydrogen and Oxygen isotopes in the mainstream of Yangtze River[J]. Geological Science and Technology Information, 2011, 30(5): 110-114.]
[29] TALMA S, LORENTZ S, WOODBORNE S. South African contribution to the Rivers CRP[M]//Monitoring Isotopes in Rivers: Creation of the Global Network of Isotopes in Rivers (GNIR). Vienna, Austria: International Atomic Energy Agency, 2012: 69-94.
[30] PANARELLO H O, DAPEÑA C. Isotope tracing of the Paraná River, Argentina[M]//Monitoring Isotopes in Rivers: Creation of the Global Network of Isotopes in Rivers (GNIR). Vienna, Austria: International Atomic Energy Agency, 2012: 51-68.
[1] 汪聪聪, 王益澄, 马仁锋, 王静敏. 经济集聚对雾霾污染影响的空间计量研究——以长三角洲地区为例[J]. 长江流域资源与环境, 2019, 28(01): 1-11.
[2] 刘云强, 权 泉, 朱佳玲, 王 芳. 绿色技术创新、产业集聚与生态效率——以长江经济带城市群为例[J]. 长江流域资源与环境, 2018, 27(11): 2395-2406.
[3] 王丰龙, 曾刚, 叶琴, 陈弘挺. 基于创新合作联系的城市网络格局分析——以长江经济带为例[J]. 长江流域资源与环境, 2017, 26(06): 797-805.
[4] 程建, 程久苗, 吴九兴, 徐玉婷. 2000~2010年长江流域土地利用变化与生态系统服务功能变化[J]. 长江流域资源与环境, 2017, 26(06): 894-901.
[5] 姜磊, 周海峰, 柏玲. 长江中游城市群经济-城市-社会-环境耦合度空间差异分析[J]. 长江流域资源与环境, 2017, 26(05): 649-656.
[6] 周毅, 吴华武, 贺斌, 李静, 段伟利, 王建锋, 童世贤. 长江水δ18O和δD时空变化特征及其影响因素分析[J]. 长江流域资源与环境, 2017, 26(05): 678-686.
[7] 姚振兴, 陈庆强, 杨钦川. 近60年来崇明岛东部淤涨速率初探[J]. 长江流域资源与环境, 2017, 26(05): 698-705.
[8] 刘俸霞, 王艳君, 赵晶, 陈雪, 姜彤. 全球升温1.5℃与2.0℃情景下长江中下游地区极端降水的变化特征[J]. 长江流域资源与环境, 2017, 26(05): 778-788.
[9] 梅琳, 黄柏石, 敖荣军, 张涛. 长江中游城市群城市职能结构演变及其动力因子研究[J]. 长江流域资源与环境, 2017, 26(04): 481-489.
[10] 武晓静, 杜德斌, 肖刚, 管明明. 长江经济带城市创新能力差异的时空格局演变[J]. 长江流域资源与环境, 2017, 26(04): 490-499.
[11] 周志高, 林爱文, 王伦澈. 长江中游城市群太阳辐射长期变化特征及其与气象要素的关系研究[J]. 长江流域资源与环境, 2017, 26(04): 563-571.
[12] 成定平, 淦苏美. 长江经济带高技术产业投入产出效率分析[J]. 长江流域资源与环境, 2017, 26(03): 325-332.
[13] 潘欣, 尹义星, 王小军. 1960~2010年长江流域极端降水的时空演变及未来趋势[J]. 长江流域资源与环境, 2017, 26(03): 436-444.
[14] 布乃顺, 胡悦, 杨骁, 张雪, 王俭, 李博, 方长明, 宋有涛. 互花米草入侵对长江河口湿地土壤理化性质的影响[J]. 长江流域资源与环境, 2017, 26(01): 100-109.
[15] 叶潇潇, 赵一飞. 基于聚类分析的长江三角洲港口群可持续发展水平评价[J]. 长江流域资源与环境, 2016, 25(Z1): 17-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈振杰, 李满春, 刘永学. 基于GIS的桐庐县农村居民点空间格局研究[J]. 长江流域资源与环境, 2008, 17(2): 180 .
[2] 王 中,陈艳英. 三峡库区航运气象条件分析[J]. 长江流域资源与环境, 2008, 17(1): 79 .
[3] 张 健,陈 凤,濮励杰,彭补拙. 区域土壤质量对土地利用变化响应研究——以土壤氮元素为例[J]. 长江流域资源与环境, 2008, 17(1): 36 .
[4] 桑连海,陈 进. 长江流域的节水形势及发展方向[J]. 长江流域资源与环境, 2006, 15(1): 10 -13 .
[5] 叶闽,张立,. 健康长江水域生态指标体系初探[J]. 长江流域资源与环境, 2006, 15(Sup1): 72 -76 .
[6] 张慧杰,杨德国,危起伟,杜浩,张辉,陈细华,. 葛洲坝至古老背江段鱼类的水声学调查[J]. 长江流域资源与环境, 2007, 16(1): 86 -91 .
[7] 蔡银莺,张安录. 江汉平原农地保护的外部效益研究[J]. 长江流域资源与环境, 2008, 17(1): 98 .
[8] 王红娟,姜加虎,黄 群. 基于知识的洞庭湖湿地遥感分类方法[J]. 长江流域资源与环境, 2008, 17(3): 370 .
[9] 张镀光,王克林,陈洪松,李 新,王书功. 基于DEM的地形指数提取方法及应用[J]. 长江流域资源与环境, 2005, 14(6): 715 -719 .
[10] 尹义星, 许有鹏, 陈莹. 太湖最高水位及其与气候变化、人类活动的关系[J]. 长江流域资源与环境, 2009, 18(7): 609 .