长江流域资源与环境 >> 2016, Vol. 25 >> Issue (09): 1421-1429.doi: 10.11870/cjlyzyyhj201609013
王彬俨1,2, 严冬春1, 文安邦1, 陈佳村1,2
WANG Bin-yan1,2, YAN Dong-chun1, WEN An-bang1, CHEN Jia-cun1,2
摘要: 为揭示三峡水库干流消落带的泥沙沉积规律、分析沉积泥沙来源,本研究采用原位观测方法采集沉积泥沙样品,利用激光粒度仪测试泥沙粒径,分析沉积泥沙粒径在水平、垂直和高程3个维度上的变化特征,并与三峡水库入库泥沙的粒径特征相结合,阐述消落带沉积泥沙来源。结果表明:(1)三峡水库干流消落带沉积泥沙粒径在水平方向上存在比较强烈的空间变化,中值粒径沿河流流向方向呈逐渐下降趋势,并在忠县及其下游河段基本保持稳定;(2)泥沙粒径随高程的变化存在较大的空间差异,河流挟沙是消落带下部粗颗粒泥沙的主要来源,而消落带上方的土壤侵蚀强度越高,消落带顶部的沉积颗粒就越容易变粗;(3)在水库尾端,泥沙剖面存在较明显的旋迴分层现象,其中值粒径数值较大、变化幅度较宽,越往下游推进,中值粒径的数值越低、变化幅度越小,泥沙旋迴分层现象逐渐消失;(4)水库尾端的沉积泥沙以库区外来沙为主,越往下游推进,库区内产沙对粗颗粒泥沙的贡献逐渐升高,但库区内外来沙都能够为沉积泥沙提供丰富的细颗粒物源,因此,细沙的来源具有一定的复杂性和多样化特征。
中图分类号:
[1] HUPP C R, OSTERKAMP W R. Riparian vegetation and fluvial geomorphic processes[J]. Geomorphology, 1996, 14(4):277-295. [2] 中国工程院三峡工程阶段性评估项目组. 三峡工程阶段性评估报告[M]. 北京:中国水利水电出版社, 2010. [3] 程瑞梅, 王晓荣, 肖文发, 等. 消落带研究进展[J]. 林业科学, 2010, 46(4):111-119. [CHENG R M, WANG X R, XIAO W F, et al. Advances in studies on water-level-fluctuation zone[J]. Scientia Silvae Sinicae, 2010, 46(4):111-119.] [4] 黄川, 谢红勇, 龙良碧.三峡湖岸消落带生态系统重建模式的研究[J]. 重庆教育学院学报, 2003, 16(3):63-66. [HUANG C, XIE H Y, LONG L B. A research on the lake-bank fluctuating belt's eco-system reconstruction model in the Three Gorges Zone[J]. Journal of Chongqing College of Education, 2003, 16(3):63-66.] [5] FÖRSTNER U, WITTMANN G T W. Metal pollution in the aquatic environment[M]. Berlin Heidelberg:Springer, 1981. [6] COOPER C M. Biological effects of agriculturally derived surface water pollutants on aquatic systems-a review[J]. Journal of Environmental Quality, 1993, 22(3):402-408. [7] PINAY G, RUFFINONI C, FABRE A. Nitrogen cycling in two riparian forest soils under different geomorphic conditions[J]. Biogeochemistry, 1995, 30(1):9-29. [8] STEIGER J, GURNELL A M. Spatial hydrogeomorphological influences on sediment and nutrient deposition in riparian zones:observations from the Garonne River, France[J]. Geomorphology, 2003, 49(1/2):1-23. [9] MATTHAEI C D, WELLER F, KELLY D W, et al. Impacts of fine sediment addition to tussock, pasture, dairy and deer farming streams in New Zealand[J]. Freshwater Biology, 2006, 51(11):2154-2172. [10] BOND N R, DOWNES B J. The independent and interactive effects of fine sediment and flow on benthic invertebrate communities characteristic of small upland streams[J]. Freshwater Biology, 2003, 48(3):455-465. [11] WOOD P J, VANN A R, WANLESS P J. The response of Melampophylax mucoreus (Hagen) (Trichoptera:Limnephilidae) to rapid sedimentation[J]. Hydrobiologia, 2001, 455(1/3):183-188. [12] WOOD P J, TOONE J, GREENWOOD M T, et al. The response of four lotic macroinvertebrate taxa to burial by sediments[J]. Archiv für Hydrobiologie, 2005, 163(2):145-162. [13] PALMER M A, COVICH A P, LAKE S, et al. Linkages between aquatic sediment biota and life above sediments as potential drivers of biodiversity and ecological processes[J]. Bioscience, 2000, 50(12):1062-1075. [14] 许炯心. 黄河中游支流悬移质粒度与含沙量、流量间的复杂关系[J]. 地理研究, 2003, 22(1):39-48. [XU J X. Complicated relationships between suspended sediment grain-size, water discharge and sediment concentration in tributaries of middle Yellow River[J]. Geographical Research, 2003, 22(1):39-48.] [15] 李义天. 冲积河道平面变形计算初步研究[J]. 泥沙研究, 1988(1):34-44. [LI Y T. A primary study on the calculation of two-dimensional river bed deformation in alluvial rivers[J]. Journal of Sediment Research, 1988(1):34-44.] [16] WU W M, RODI W, WENKA T. 3D numerical modeling of flow and sediment transport in open channels[J]. Journal of Hydraulic Engineering, 2000, 126(1):4-15. [17] 陈显维, 许全喜, 陈泽方. 三峡水库蓄水以来进出库水沙特性分析[J]. 人民长江, 2006, 37(8):1-3,6. [CHEN X W, XU Q X, CHEN Z F. Flow-sediment features of Three Gorges Reservoir since impoundment[J]. Yangtze River, 2006, 37(8):1-3, 6.] [18] 卢金友, 黄悦. 三峡水库淤积计算预测与原型实测结果比较分析[J]. 长江科学院院报, 2013, 30(12):1-6,27. [LU J Y, HUANG Y. Comparison of sedimentation in Three Gorges Reservoir between calculated prediction and prototype measurement[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(12):1-6, 27.] [19] 谢德体, 范小华, 魏朝富. 三峡水库消落区对库区水土环境的影响研究[J]. 西南大学学报(自然科学版), 2007, 29(1):39-47. [XIE D T, FAN X H, WEI C F. Effects of the riparian zone of the Three-Gorges Reservoir on the water-soil environment of the reservoir area[J]. Journal of Southwest University (Natural Science), 2007, 29(1):39-47.] [20] 唐敏,杨春华,雷波. 基于GIS的三峡水库不同坡度消落带分布特征[J]. 三峡环境与生态, 2013, 35(3):8-10,20. [TANG M, YANG C H, LEI B. Spatial distribution investigation on the water-level-fluctuating zone slopes in Three Gorges Reservoir Areas based on GIS[J]. Environment and Ecology in the Three Gorges, 2013, 35(3):8-10, 20.] [21] 张虹. 三峡重庆库区消落区基本特征与生态功能分析[J]. 长江流域资源与环境, 2008, 17(3):374-378. [ZHANG H. Analysis of the characteristics and ecosystem service of the water-level-fluctuating zone in the Three Gorges Reservoir[J]. Resources and Environment in the Yangtze Basin, 2008, 17(3):374-378.] [22] 李文杰, 杨胜发, 付旭辉, 等. 三峡水库运行初期的泥沙淤积特点[J]. 科学进展, 2015, 26(5):676-685. [LI W J, YANG S F, FU X H, et al. Sedimentation characteristics in the Three Gorges Reservoir during the initial operation stage[J]. Advances in Water Science, 2015, 26(5):676-685.] [23] 白厚义. 试验方法及统计分析[M]. 北京:中国林业出版社,2005. [24] 阎丹丹, 鲍玉海, 贺秀斌, 等. 三峡水库蓄水后长江干支流及消落带泥沙颗粒特征分析[J]. 水土保持学报, 2014, 28(4):289-292,329. [YAN D D, BAO Y H, HE X B, et al. Particle size characteristics of sediment in draw down area of upper Yangtze River and its major tributaries of Three Gorges Reservoir[J]. Journal of Soil and Water Conservation, 2014, 28(4):289-292, 329.] [25] 郭进, 文安邦, 严冬春, 等. 三峡库区紫色土坡地土壤颗粒流失特征[J]. 水土保持学报, 2012,26(3):18-21. [GUO J, WEN A B, YAN D C, et al. Particle characteristics of eroded purple soil from slope land in the Three Gorges Reservoir Region[J]. Journal of Soil and Water Conservation, 2012, 26(3):18-21.] [26] 魏丽, 卢金友, 刘长波. 三峡水库蓄水后长江上游水沙变化分析[J]. 中国农村水利水电, 2010(6):1-4, 8. [WEI L, LU J Y, LIU C B. An analysis of changing characteristics of runoff and sediment transport in upper Changjiang River after the impounding of Three Gorges Reservoir[J]. China Rural Water and Hydropower, 2010(6):1-4, 8.] |
[1] | 刘莲, 刘红兵, 汪涛, 朱波, 姜世伟. 三峡库区消落带农用坡地磷素径流流失特征[J]. 长江流域资源与环境, 2018, 27(11): 2609-2618. |
[2] | 刘金珍, 樊皓, 阮娅. 乌东德水库坝前段消落带生态类型划分及生态修复模式初探[J]. 长江流域资源与环境, 2016, 25(11): 1767-1773. |
[3] | 崔天宇, 庞奖励, 黄春长, 查小春, 周亚利, 张文桐. 汉江上游风成谷地黄土的重矿物组成特征及意义[J]. 长江流域资源与环境, 2016, 25(06): 943-951. |
[4] | 刘秧, 余斌, 易伟, 朱云波, 刘强. 汶川地震后四川省安县黄洞子沟泥石流特征[J]. 长江流域资源与环境, 2016, 25(06): 996-1001. |
[5] | 朱强, 杨世伦, 孟翊, 杨海飞, 吴创收, 史本伟. 近期长江口南港河槽沉积地貌变异及其可能原因[J]. 长江流域资源与环境, 2016, 25(04): 560-566. |
[6] | 王晓荣, 程瑞梅, 肖文发, 潘磊, 曾立雄. 三峡库区消落带水淹初期主要优势草本植物生态位变化特征[J]. 长江流域资源与环境, 2016, 25(03): 404-411. |
[7] | 徐建霞, 彭刚志, 王建柱. 三峡库区香溪河消落带植被多样性及分布格局研究[J]. 长江流域资源与环境, 2015, 24(08): 1345-1350. |
[8] | 曾小凡 翟建青 苏布达 姜 彤 朱 进. 长江流域年平均气温的时空变化特征[J]. 长江流域资源与环境, 2009, 18(5): 427-. |
[9] | 胡 刚 王里奥 袁 辉 包 亮 欧阳鸥. 三峡库区消落带下部区域土壤氮磷释放规律模拟实验研究[J]. 长江流域资源与环境, 2008, 17(5): 780-780. |
[10] | 陈西庆,吕溪溪,严以新,童朝锋,窦希萍, 李键庸,田 磊. 长江河口上边界床沙粒径的长期变化及其原因[J]. 长江流域资源与环境, 2008, 17(4): 598-598. |
[11] | 王里奥,黄 川,詹艳慧,袁 辉. 三峡库区消落带淹水—落干过程土壤磷吸附—解吸及释放研究[J]. 长江流域资源与环境, 2006, 15(5): 593-597. |
[12] | 毛战坡,单保庆,彭文启,王洪军. 氮素在河流生态系统中的滞留研究进展[J]. 长江流域资源与环境, 2006, 15(4): 480-484. |
[13] | 袁 辉,王里奥,詹艳慧,黄 川,胡 刚. 三峡库区消落带健康评价指标体系[J]. 长江流域资源与环境, 2006, 15(2): 249-253. |
[14] | 程 江,何 青,王元叶,刘 红,夏小明. 长江河口细颗粒泥沙絮凝体粒径的谱分析[J]. 长江流域资源与环境, 2005, 14(4): 460-464. |
[15] | 许 川, 舒为群, 曹 佳, 汪 洋. 三峡库区消落带富营养化及其危害预测和防治[J]. 长江流域资源与环境, 2005, 14(4): 440-444. |
|