长江流域资源与环境 >> 2016, Vol. 25 >> Issue (06): 989-995.doi: 10.11870/cjlyzyyhj201606016

• 生态环境 • 上一篇    下一篇

鄱阳湖湿地土壤-植物-地下水稳定氧同位素组成分析

邓志民1, 张翔2, 张华3, 潘国艳2, 秦学全4   

  1. 1. 长江水资源保护科学研究所, 湖北 武汉 430051;
    2. 武汉大学水资源与水电工程科学国家重点实验室, 湖北 武汉 430072;
    3. 江西省勘察设计研究院, 江西 南昌 330095;
    4. 山东省鲁北地质工程勘察院, 山东 德州 253015
  • 收稿日期:2015-09-30 修回日期:2016-02-03 出版日期:2016-06-20
  • 通讯作者: 张翔 E-mail:zhangxiang@whu.edu.cn
  • 作者简介:邓志民(1985~),男,博士,工程师,主要从事同位素生态水文方面研究.E-mail:whudzmgx@163.com
  • 基金资助:
    国家自然科学基金项目"基于稳定碳同位素的牧草水分利用效率研究"(51409191)

ANALYSIS OF STABLE OXYGEN ISOTOPE OF SOIL-PLANT-GROUNDWATER IN POYANG LAKE WETLAND

DENG Zhi-min1, ZHANG Xiang2, ZHANG Hua3, PAN Guo-yan2, QIN Xue-quan4   

  1. 1. Changjiang Water Resources Protection Institute, Wuhan 430051, China;
    2. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China;
    3. Jiangxi Province Survey and Design Research Institute, Nanchang 330095, China;
    4. Shandong Provincial Lubei Geo-engineering Exploration Institutes, Dezhou 253015, China
  • Received:2015-09-30 Revised:2016-02-03 Online:2016-06-20
  • Supported by:
    National Natural Science Foundation of China (Grant No. 51409191)

摘要: 近年来,鄱阳湖水位持续走低,极端干旱事件频繁发生,湿地生态系统结构与功能遭受破坏。为此,于2014年鄱阳湖湿地保护区两个断面分层采集0~100cm土壤,并采集优势种植物和河湖水以及地下水数据,运用稳定同位素技术,分析了土壤-植物-河湖水-地下水稳定同位素变化特征,并探寻它们之间的补给关系。结果表明,两断面土壤水氧同位素变化范围分别为–10.48‰~–5.23‰和–12.39‰~–6.55‰,算术平均值分别为–8.36‰和–8.63‰。断面一表层(0~30cm)土壤水氧重同位素较富集,且随深度增加而减小;断面二表层(0~40cm)土壤水中氧同位素组成基本无变化。断面一的地下水主要是受降水补给,断面二可能是受降水和河湖水共同补给。鄱阳湖湿地两断面优势种植物虉草叶片水的氧同位素值最大,为–0.9‰,其次是灰化苔草和芦苇,分别为–4.23‰和–5.25‰。

关键词: 稳定氧同位素, 水分补给, 鄱阳湖湿地

Abstract: Poyang Lake is the largest freshwater lake in China and is also the largest single area of habitat for migratory birds. The water level of Poyang Lake continues to decline, and extreme droughts have frequently occurred in recent years, so that the structure and function of the wetland ecosystem are destroyed. In this paper, stable oxygen isotopes were used as a tracer to identify composition of soil water, lake water, ground water and plant water. The focus was on characterizing the variation with depth of the stable oxygen isotope composition and identifying the main sources of oxygen in soil water profiles, groundwater and plant water, understanding the mechanisms of water movement among them. Soil water sampled at 10 cm intervals over the top 100 cm at two sites in the Poyang Lake wetland, and water samples collected from the plants, lake and river water and ground water were analyzed for stable oxygen isotope composition, to explore the recharge and discharge of relationship between them. The results indicate that the range of the stable oxygen isotope value of soil water from two sites varied from –10.48‰ to –5.23‰ and –12.39‰ to –6.55‰, respectively, average value of which were –8.36‰ and –8.63‰. The value of δ18O at depth of 0 to 30 cm at one site declined with increasing soil depth, however, the value of δ18O at depth of 0 to 40 cm at another site had unchanged with increasing soil depth. The value of δ18O of groundwater at one site was smaller than that of Xiu River, at another site was nearly close to that of the Gan River. Thus, the groundwater at one site was mainly influenced by precipitation, at another site by precipitation, lake and river water. The average value of δ18O of the domain plant Phalaris arundinacea Linn leave at two sites in Poyang Lake wetland were the largest, –0.9‰, Crex cinerascens, –4.23‰, and Phragmites Adans the smallest, –5.25‰. The value of δ18O of the same plant leave was different at different sample points at same site, maybe due to different characteristics of migration of primary elements such as Ca, Mg at different geomorphological positions(depression, slope) inducing the different impact on plant transpiration. This study provided reference data that could make a useful contribution to the assessment of ecosystem in the Poyang Lake.

Key words: stable oxygen isotope, water supply, Poyang Lake wetland

中图分类号: 

  • S152.7
[1] 邓志民, 张 翔, 罗 蔚, 等. 鄱阳湖湿地苔草对水位变化的响应[J]. 应用基础与工程科学学报, 2014, 22(5): 865-876. [DENG Z M, ZHANG X, LUO W, et al. Response of Poyang Lake wetland carex to the water level change[J]. Journal of Basic Science and Engineering, 2014, 22(5): 865-876.]
[2] 欧阳千林, 刘卫林. 近50年鄱阳湖水位变化特征研究[J]. 长江流域资源与环境, 2014, 23(11): 1545-1550. [OUYANG Q L, LIU W L. Variation characteristics of water level in Poyang Lake over 50 years[J]. Resources and Environment in the Yangtze Basin, 2014, 23(11): 1545-1550.]
[3] 罗 蔚, 张 翔, 邓志民, 等. 近50年鄱阳湖流域入湖总水量变化与旱涝急转规律分析[J]. 应用基础与工程科学学报, 2013, 21(5): 845-856. [LUO W, ZHANG X, DENG Z M, et al. Variation of the total runoff into Poyang Lake and drought-flood abrupt alternation during the past 50 years[J]. Journal of Basic Science and Engineering, 2013, 21(5): 845-856.]
[4] 刘小东, 任兵芳. 鄱阳湖低枯水位变化特征与成因探讨[J]. 人民长江, 2014, 45(4): 12-16. [LIU X D, REN B F. Analysis on variation characteristics and genesis of lower water level of Poyang Lake[J]. Yangtze River, 2014, 45(4): 12-16.]
[5] 刘元波, 赵晓松, 吴桂平. 近十年鄱阳湖区极端干旱事件频发现象成因初析[J]. 长江流域资源与环境, 2014, 23(1): 131-138. [LIU Y B, ZHAO X S, WU G P. A primary investigation on the formation of frequent droughts in the Poyang Lake basin in recent decade[J]. Resources and Environment in the Yangtze Basin, 2014, 23(1): 131-138.]
[6] YOU H L, XU L G, LIU G L, et al. Effects of inter-annual water level fluctuations on vegetation evolution in typical wetlands of Poyang Lake, China[J]. Wetlands, 2015, 35(5): 931-943.
[7] 胡振鹏, 葛 刚, 刘成林. 鄱阳湖湿地植被退化原因分析及其预警[J]. 长江流域资源与环境, 2015, 24(3): 381-386. [HU Z P, GE G, LIU C L. Cause analysis and early warning for wetland vegetation degradation in Poyang Lake[J]. Resources and Environment in the Yangtze Basin, 2015, 24(3): 381-386.]
[8] DAWSON T E, EHLERINGER J R. Streamside trees that do not use stream water[J]. Nature, 1991, 350(6316): 335-337.
[9] PHILLIPS D L, GREGG J W. Source partitioning using stable isotopes: coping with too many sources[J]. Oecologia, 2003, 136(2): 261-269.
[10] MEIßNER M, KöHLER M, SCHWENDENMANN L, et al. Soil water uptake by trees using water stable isotopes (δ2H and δ18O)-a method test regarding soil moisture, texture and carbonate[J]. Plant and Soil, 2014, 376(1/2): 327-335.
[11] 张 翔, 邓志民, 潘国艳, 等. 鄱阳湖湿地土壤水稳定同位素变化特征[J]. 生态学报, 2015, 35(22): 7580-7588. [ZHANG X, DENG Z M, PAN G Y, et al. Variation in stable isotope composition in soil water in Poyang Lake wetland[J]. Acta Ecologica Sinica, 2015, 35(22): 7580-7588.]
[12] 胡春华, 姜加虎, 朱海虹. 蚌湖与鄱阳湖水位关系及滩地淹露分析[J]. 海洋与湖沼, 1997, 28(6): 617-623. [HU C H, JIANG J H, ZHU H H. Analysis on water-level relationships between Banghu depression and Poyang Lake and its submersion and emersion of bottomland[J]. Oceanologia et Limnologia Sinica, 1997, 28(6): 617-623.]
[13] WEST A G, PATRICKSON S J, EHLERINGER J R. Water extraction times for plant and soil materials used in stable isotope analysis[J]. Rapid Communications in Mass Spectrometry, 2006, 20(8): 1317-1321.
[14] 田日昌, 陈洪松, 宋献方, 等. 湘西北红壤丘陵区土壤水运移的稳定性同位素特征[J].环境科学, 2009, 30(9): 2747-2754. [TIAN R C, CHEN H S, SONG X F, et al. Characteristics of soil water movement using stable isotopes in red soil hilly region of northwest Hunan[J]. Environmental Science, 2009, 30(9): 2747-2754.]
[15] CLARK I D, FRITZ P. Environmental isotopes in hydrogeology[M]. Boca Raton, FL: CRC Press LLC, 1997.
[16] 吴建东, 刘观华, 金杰峰, 等. 鄱阳湖秋季洲滩植物种类结构分析[J]. 江西科学, 2010, 28(4):549-554. [WU J D, LIU G H, JIN J F, et al. Structure analysis of beach vegetation in Poyang Lake in autumn[J]. Jiangxi Science, 2010, 28(4): 549-554.]
[17] 胡豆豆, 欧阳克蕙, 戴征煌, 等. 鄱阳湖湿地灰化苔草草甸群落特征及多样性[J]. 草业科学, 2013, 30(6): 844-848. [HU D D, OUYANG K H, DAI Z H, et al. Investigation on community characteristics and α-diversity of Carex cinerascens meadow steppe in Poyang Lake wetland[J]. Pratacultural Science, 2013, 30(6): 844-848.]
[18] BRISTOW K L, HORTON R. Modeling the impact of partial surface mulch on soil heat and water flow. Theoretical and applied climatology, 1996, 54(1/2): 85-98.
[19] 梁 越. 鄱阳湖区蚌湖重金属及氮的生物地球化学与同位素示踪[D]. 南昌: 南昌大学博士学位论文, 2014. [LIANG Y. Biogeochemistry of heavy metal and nitrogen and isotopic tracing in Bang Lake (Poyang Lake)[D]. Nanchang: Doctor Dissertation of Nanchang University, 2014.]
[20] 赵惠萍, 张 翔, 邓志民, 等. 鄱阳湖湿地降水氢氧稳定同位素特征分析[J]. 水资源研究, 2015, 4(3):257-264. [ZHAO H P, ZHANG X, DENG Z M, et al. The characteristics of stable hydrogen and oxygen isotopes of atmospheric precipitation in Poyang Lake wetland[J]. Journal of Water Resources Research, 2015, 4(3): 257-264.]
[21] 李 为, 刘 彦, 余龙江, 等. 桂林岩溶试验场不同地貌部位主要元素迁移特征及与植物蒸腾作用的相关性[J]. 华中农业大学学报, 2007, 26(1):55-58. [LI W, LIU Y, YU L J, et al. Characteristics of primary elements migration at different geomorphological positions and their correlation to plant transpiration in Guilin karst experimental site[J]. Journal of Huazhong Agricultural University, 2007, 26(1): 55-58.]
[22] 段德玉, 欧阳华. 稳定氢氧同位素在定量区分植物水分利用来源中的应用[J]. 生态环境, 2007, 16(2): 655-660. [DUAN D Y, OUYANG H. Application of stable hydrogen and oxygen isotope in analyzing plant water use sources[J]. Ecology and Environment, 2007, 16(2): 655-660.]
[23] 李修仓, 胡顺军, 李岳坦, 等. 干旱区旱生芦苇根系分布及土壤水分动态[J]. 草业学报, 2008, 17(2): 97-101. [LI X C, HU S J, LI Y T, et al. Study on the root distribution and soil water dynamics under Phragmites arid area[J]. Acta Prataculturae Sinica, 2008, 17(2): 97-101.]
[24] 朱海虹, 张 本, 等著. 鄱阳湖-水文·生物·沉积·湿地·开发整治[M]. 合肥: 中国科学技术大学出版社, 1997. [ZHU H H, ZHANG B, et al. Poyang lake-hydrology biology deposit wetland development and rehabilitation[M]. Hefei: China Science and Technology University Press, 1997.]
[25] BRUNEL J P, WALKER G R, WALKER C D, et al. Using stable isotopes of water to trace plant water uptake[M]//STEWART G R. Stable Isotopes in Plant Nutrition, Soil Fertility and Environmental Studies. Vienna: International Atomic Energy Agency, 1991: 543-551.
[26] ALESSIO G A, DE L M, BRUGNOLI E, et al. Water sources and water-use efficiency in Mediterranean coastal dune vegetation[J]. Plant Biology, 2004, 6(3): 350-357.
[27] WHITE J W C. Stable Hydrogen isotope ratios in plants. A review of current theory and some potential applications[M]//RUNDEL P W, EHLERINGER J R, NAGY K A, et al. Stable Isotopes in Ecological Research. New York: Springer, 1989, 68: 142-162.
[1] 李云良, 许秀丽, 赵贵章, 姚静, 张奇. 鄱阳湖典型洲滩湿地土壤质地与水分特征参数研究[J]. 长江流域资源与环境, 2016, 25(08): 1200-1208.
[2] 夏少霞, 于秀波, 刘宇, 贾亦飞, 张广帅. 鄱阳湖湿地现状问题与未来趋势[J]. 长江流域资源与环境, 2016, 25(07): 1103-1111.
[3] 孙传谆, 甄霖, 王超, 胡洁, 杜秉贞. 基于InVEST模型的鄱阳湖湿地生物多样性情景分析[J]. 长江流域资源与环境, 2015, 24(07): 1119-1125.
[4] 简敏菲, 简美锋, 李玲玉, 汪斯琛, 余厚平, 余冠军. 鄱阳湖典型湿地沉水植物的分布格局及其水环境影响因子[J]. 长江流域资源与环境, 2015, 24(05): 765-772.
[5] 梁文广,赵英时,周霞,. 基于MODIS数据的地表组分温度反演研究[J]. 长江流域资源与环境, 2008, 17(6): 948-948.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[2] 李宗尧,|杨桂山. 经济快速发展地区生态环境竞争力的评价方法——以安徽沿江地区为例[J]. 长江流域资源与环境, 2008, 17(1): 124 .
[3] 季永兴. 上海多自然型河流整治实践与探索[J]. 长江流域资源与环境, 2008, 17(2): 264 .
[4] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[5] 毛战坡,单保庆,彭文启,王洪军. 氮素在河流生态系统中的滞留研究进展[J]. 长江流域资源与环境, 2006, 15(4): 480 -484 .
[6] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[7] 许有鹏,于瑞宏,马宗伟. 长江中下游洪水灾害成因及洪水特征模拟分析[J]. 长江流域资源与环境, 2005, 14(5): 638 -643 .
[8] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[9] 陈宁波,王 辉,江洪泽. 市场经济条件下珍贵可再生资源之灭绝探析[J]. 长江流域资源与环境, 2008, 17(4): 556 .
[10] 胡雄星,韩中豪,张 进,夏 凡,王文华. 黄浦江表层沉积物中重金属污染的潜在生态风险评价[J]. 长江流域资源与环境, 2008, 17(1): 109 .