长江流域资源与环境 >> 2016, Vol. 25 >> Issue (08): 1200-1208.doi: 10.11870/cjlyzyyhj201608006

• 自然资源 • 上一篇    下一篇

鄱阳湖典型洲滩湿地土壤质地与水分特征参数研究

李云良1,2, 许秀丽1, 赵贵章3, 姚静1, 张奇1,4   

  1. 1. 中国科学院南京地理与湖泊研究所, 流域地理学重点实验室, 江苏 南京 210008;
    2. 河海大学水文水资源与水利工程科学国家重点实验室, 江苏 南京 210098;
    3. 华北水利水电大学, 河南 郑州 450045;
    4. 江西师范大学, 鄱阳湖湿地与流域研究教育部重点实验室, 江西 南昌 330022
  • 收稿日期:2015-12-09 修回日期:2016-02-20 出版日期:2016-08-20
  • 作者简介:李云良(1983~),男,助理研究员,博士,主要从事湖泊流域系统水文水动力过程模拟研究.E-mail:yunliangli@niglas.ac.cn
  • 基金资助:
    国家重点基础研究发展计划(2012CB417003);国家自然科学基金项目(41401031);河海大学水文水资源与水利工程科学国家重点实验室开放研究基金(2014491611);江西省重大生态安全问题监控协同创新中心项目(JXS-EW-00)

RESEARCH OF SOIL TEXTURES AND SOIL-WATER CHARACTERISTIC PARAMETERS IN A TYPICAL WETLAND OF POYANG LAKE

LI Yun-liang1,2, XU Xiu-li1, ZHAO Gui-zhang3, YAO Jing1, ZHANG Qi1,4   

  1. 1. Key Laboratory of Watershed Geographic Science, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
    2. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China;
    3. North China University of Water Resources and Electric Power, Zhengzhou 450045, China;
    4. Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
  • Received:2015-12-09 Revised:2016-02-20 Online:2016-08-20
  • Supported by:
    The National Basic Research Program of China (2012CB417003);The National Natural Science Foundation of China (41401031);The Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (2014491611);The Collaborative Innovation Center for Major Ecological Security Issues of Jiangxi Province and Monitoring Implementation (JXS-EW-00)

摘要: 频繁干湿交替增强了鄱阳湖洲滩土壤水对湿地系统的动态调节作用。以鄱阳湖吴城国家自然保护区的一个典型洲滩湿地为研究区,调查分析了土壤质地沿高程梯度的分布特征,确定了不同土壤质地的水分特征参数,并阐述了土壤质地与其水分特征参数的空间异质性。结果发现:该洲滩湿地主要分布砂土、粉壤土和粘土三种类型。水平断面方向上,粒径较粗的砂土和粉壤土主要分布在高位滩地,而粒径相对较细的粘土主要分布在近湖区开阔水面的低位滩地;土壤剖面方向上,土壤质地呈现出固有分层特性。van Genuchten模型应用于鄱阳湖洲滩湿地土壤水分特征曲线拟合,证实了该模型在鄱阳湖洲滩湿地的适用性。模型结果表明土壤残余含水率θr变化约9%~19%,饱和含水率θs变化约42%~57%,土壤进气值的倒数α约0.01 cm-1,水分特征曲线形状参数n介于1.11~4.65之间。土壤含水率变化对van Genuchten模型中参数αn较为敏感,而对θrθs的敏感性相对较弱。研究成果可为后续该区域以及全湖区湿地生态水文模型的构建和发展提供背景信息和参数资料。

关键词: 土壤质地, van Genuchten模型, 水分特征曲线, 空间异质性, 鄱阳湖湿地

Abstract: Frequent wetting and drying processes increase the dynamic regulation functions of soil water in the Poyang Lake wetlands. In this study, the soil textures and associated soil-water characteristic parameters were investigated using field sampling and laboratory testing in a typical wetland section at Wucheng, northern Poyang Lake. The main objectives of this paper are to analyze the spatial heterogeneity of the soil textures and water characteristic parameters in the wetland. Field investigations show that the wetland section has three different soil textures, including sand, silt sand and loam. The sand and silt sand primarily distribute at the high elevation of the wetland section, and the loam distributes at the low elevation area adjacent to the open lake water. This spatial pattern is likely to attribute to the highly dynamic water level variations due to the combined effects of local catchment rivers and the Yangtze River. The soil textures exhibit obviously spatial heterogeneity in this typical wetland section in both the horizontal and vertical directions. In addition, the van Genuchten model has the ability to capture the relationship between the soil water content and soil pressure head, and the correlation coefficient can reach up to 0.99. The saturated water content θs for different soil textures varies from 42% to 57%, and the residual water content θr varies between around 9% and 19%. The fitting values of α and n in van Genuchten model are around 0.01 cm-1 and 3.2, respectively. These results demonstrate that soil textures play an important role in soil water storage and water transport processes. Sensitivity results further indicate that the variations of soil water content are more sensitive to the values of α and n than to those of the θr and θs. The outcomes of this study will not only provide background information relating to the soil water for the future model development of Poyang Lake wetland, but also make better understanding the ecological environment changes of the lake and its wetland and how these evolve along with the water regime changes. Our study produces a first step to bridge a major gap of soil investigation in the wetland, making it possible to better understand the soil physics, chemistry and nutrient transport within the lake wetland.

Key words: soil texture, van Genuchten model, water retention curve, spatial heterogeneity, Poyang Lake wetland

中图分类号: 

  • P331.3
[1] 吕宪国. 中国湿地与湿地研究[M]. 石家庄: 河北科学技术出版社, 2008.
[2] United Nations Environment Programme, Wetlands International-Asia Pacific. Wetlands and integrated river basin management: experiences in Asia and the pacific[M]. Kuala Lumpur, 1997.
[3] 李扬帆, 刘青松. 湿地与湿地保护[M]. 北京: 中国环境科学出版社, 2003.
[4] 李胜男, 王根绪, 邓伟. 湿地景观格局与水文过程研究进展[J]. 生态学杂志, 2008, 27(6): 1012-1020.[LI S N, WANG G X, DENG W. Research advances in wetland landscape pattern and hydrological process[J]. Chinese Journal of Ecology, 2008, 27(6): 1012-1020.]
[5] EDWARDS A L, LEE D W, RICHARDS J H. Responses to a fluctuating environment: effects of water depth on growth and biomass allocation in Eleocharis cellulosa Torr. (Cyperaceae)[J]. Canadian Journal of Botany, 2003, 81(9): 964-975.
[6] 王晓龙, 徐立刚, 姚鑫, 等. 鄱阳湖典型湿地植物群落土壤微生物量特征[J]. 生态学报, 2010, 30(18): 5033-5042.[WANG X L, XU L G, YAO X, et al. Analysis on the soil microbial biomass in typical hygrophilous vegetation of Poyang Lake[J]. Acta Ecologica Sinica, 2010, 30(18): 5033-5042.]
[7] SEABLOOM E W, VAN DER VALK A G, MOLONEY K A. The role of water depth and soil temperature in determining initial composition of prairie wetland coenoclines[J]. Plant Ecology, 1998, 138(2): 203-216.
[8] FRASER L H, KARNEZIS J P. A comparative assessment of seedling survival and biomass accumulation for fourteen wetland plant species grown under minor water-depth differences[J]. Wetlands, 2005, 25(3): 520-530.
[9] WILCOX D A, NICHOLS S J. The effects of water-level fluctuations on vegetation in a Lake Huron wetland[J]. Wetlands, 2008, 28(2): 487-501.
[10] FENG X Q, ZHANG G X, XU Y J. Simulation of hydrological processes in the Zhalong wetland within a river basin, Northeast China[J]. Hydrology and Earth System Sciences, 2013, 17(7): 2797-2807.
[11] LEIBUNDGUT C, MALOSZEWSKI P, KÜLLS C. Tracer in hydrology[M]. Singapore: John Wiley & Sons Ltd, 2009.
[12] RAZZAGHI F, PLAUBORG F, JACOBSEN S E, et al. Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa[J]. Agricultural Water Management, 2012, 109: 20-29.
[13] 胡振鹏, 葛刚, 刘成林, 等. 鄱阳湖湿地植物生态系统结构及湖水位对其影响研究[J]. 长江流域资源与环境, 2010, 19(6): 597-605.[HU Z P, GE G, LIU C L, et al. Structure of Poyang Lake wetland plants ecosystem and influence of lake water level for the structure[J]. Resources and Environment in the Yangtze Basin, 2010, 19(6): 597-605.]
[14] 吴建东, 刘观华, 金杰峰, 等. 鄱阳湖秋季洲滩植物种类结构分析[J]. 江西科学, 2010, 28(4): 549-554.[WU J D, LIU G H, JIN J F, et al. Structure analysis of beach vegetation in Poyang Lake in autumn[J]. Jiangxi Science, 2010, 28(4): 549-554.]
[15] 余莉, 何隆华, 张奇, 等. 基于Landsat-TM影像的鄱阳湖典型湿地动态变化研究[J]. 遥感信息, 2010(6): 48-54.[YU L, HE L H, ZHANG Q, et al. Landsat-TM data based study on dynamic changes of the typical wetlands of Poyang Lake[J]. Remote Sensing Information, 2010(6): 48-54.]
[16] 葛刚, 赵安娜, 钟义勇, 等. 鄱阳湖洲滩优势植物种群的分布格局[J]. 湿地科学, 2011, 9(1): 19-25.[GE G, ZHAO A N, ZHONG Y Y, et al. Patterns of dominant populations of plants in islets of Poyan Lake[J]. Wetland Science, 2011, 9(1): 19-25.]
[17] 于旭光, 鲁顺保, 江玉梅, 等. 鄱阳湖南矶山湿地灰化苔草季节生长动态研究[J]. 井冈山大学学报(自然科学版), 2010, 31(5): 129-132.[YU X G, LU S B, JIANG Y M, et al. Seasonal growing dynamic of Carex cinerascens in Nanji mountain wetland of Poyang Lake[J]. Journal of Jinggangshan University (Natural Science), 2010, 31(5): 129-132.]
[18] 吴琴, 尧波, 朱丽丽, 等. 鄱阳湖典型苔草湿地生物量季节变化及固碳功能评价[J]. 长江流域资源与环境, 2012, 21(2): 215-219.[WU Q, YAO B, ZHU L L, et al. Seasonal variation in plant biomass of Carex cinerascens and its carbon fixation assessment in a typical Poyang Lake marshland[J]. Resources and Environment in the Yangtze Basin, 2012, 21(2): 215-219.]
[19] 张全军, 于秀波, 钱建鑫, 等. 鄱阳湖南矶湿地优势植物群落及土壤有机质和营养元素分布特征[J]. 生态学报, 2012, 32(12): 3656-3669.[ZHANG Q J, YU X B, QIAN J X, et al. Distribution characteristics of plant communities and soil organic matter and main nutrients in the Poyang Lake Nanji Wetland[J]. Acta Ecologica Sinica, 2012, 32(12): 3656-3669.]
[20] 许加星. 鄱阳湖典型洲滩湿地植被群落特征及与水土因子的关系研究[D]. 南京: 中国科学院南京地理与湖泊研究所硕士学位论文, 2013.[XU J X. Vegetation community structure of typical beach wetland and the relationship between the structure and water-soil factors in Poyang Lake[D]. Nanjing: Master Dissertation of Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 2013.]
[21] 许秀丽, 张奇, 李云良, 等. 鄱阳湖典型洲滩湿地土壤含水量和地下水位年内变化特征[J]. 湖泊科学, 2014, 26(2): 260-268.[XU X L, ZHANG Q, LI Y L, et al. Inner-annual variation of soil water content and groundwater level in a typical islet wetland of Lake Poyang[J]. Journal of Lake Sciences, 2014, 26(2): 260-268.]
[22] MITSCH W J, GOSSELINK J G. Wetlands[M]. New York: Van Nostrand Reinhold, 2000.
[23] 邓伟, 潘响亮, 栾兆擎. 湿地水文学研究进展[J]. 水科学进展, 2003, 14(4): 521-527.[DENG W, PAN X L, LUAN Z Q. Advances in wetland hydrology[J]. Advances in Water Science, 2003, 14(4): 521-527.]
[24] GILVEAR D J, MCINNES R J. Wetland hydrological vulnerability and the use of classification procedures: a Scottish case study[J]. Journal of Environmental Management, 1994, 42(4): 403-414.
[25] GARDNER W R, HILLEL D, BENYAMINI Y. Post-irrigation movement of soil water: 2. Simultaneous redistribution and evaporation[J]. Water Resources Research, 1970, 6(4): 1148-1153.
[26] BROOKS R H, COREY A T. Hydraulic properties of porous media[M]. Fort Collins, Colorado: Colorado State University, 1964.
[27] CAMPBELL G S. A simple method for determining unsaturated conductivity from moisture retention data[J]. Soil Science, 1974, 117(6): 311-314.
[28] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
[29] RUSSO D. Determining soil hydraulic properties by parameter estimation: on the selection of a model for the hydraulic properties[J]. Water Resources Research, 1988, 24(3): 453-459.
[30] 李云良. 降雨条件下非饱和带水-气二相流模拟研究[D]. 西安: 长安大学硕士学位论文, 2010.
[31][LI Y L. Simulation study of two-phases (water and air) flow in unsaturated zone under infiltration condition[D]. Xi'an: Master Dissertation of Chang'an University, 2010.]
[32] 朱海虹, 张本. 鄱阳湖——水文、生物、沉积、湿地、开发整治[M]. 合肥: 中国科学技术大学出版社, 1997.
[33] LEE J H W, HUANG Y, DICKMAN M, et al. Neural network modelling of coastal algal blooms[J]. Ecological Modelling, 2003, 159(2/3): 179-201.
[1] 董立宽, 方斌, 施龙博, 马鑫雨, 郑俊. 茶园土壤速效磷乡镇尺度下空间异质性对比分析——以江浙地区优质名茶种植区为例[J]. 长江流域资源与环境, 2016, 25(10): 1576-1584.
[2] 夏少霞, 于秀波, 刘宇, 贾亦飞, 张广帅. 鄱阳湖湿地现状问题与未来趋势[J]. 长江流域资源与环境, 2016, 25(07): 1103-1111.
[3] 邓志民, 张翔, 张华, 潘国艳, 秦学全. 鄱阳湖湿地土壤-植物-地下水稳定氧同位素组成分析[J]. 长江流域资源与环境, 2016, 25(06): 989-995.
[4] 杨德军, 雷少刚, 卞正富, 牟守国. 土壤物理质量指标研究进展及在矿区环境中的应用展望[J]. 长江流域资源与环境, 2015, 24(11): 1961-1968.
[5] 孙传谆, 甄霖, 王超, 胡洁, 杜秉贞. 基于InVEST模型的鄱阳湖湿地生物多样性情景分析[J]. 长江流域资源与环境, 2015, 24(07): 1119-1125.
[6] 张孝宇, 赖宗裕, 张安录. 基于地块尺度的耕地非农化驱动力空间异质性研究——以武汉市为例[J]. 长江流域资源与环境, 2015, 24(06): 994-1002.
[7] 简敏菲, 简美锋, 李玲玉, 汪斯琛, 余厚平, 余冠军. 鄱阳湖典型湿地沉水植物的分布格局及其水环境影响因子[J]. 长江流域资源与环境, 2015, 24(05): 765-772.
[8] 程冬兵, 张平仓, 赵健, 蔡崇法. 三峡库区不同水保措施下紫色土水分特征曲线特征及模型拟合[J]. 长江流域资源与环境, 2009, 18(11): 1045-.
[9] 梁文广,赵英时,周霞,. 基于MODIS数据的地表组分温度反演研究[J]. 长江流域资源与环境, 2008, 17(6): 948-948.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 罗专溪,张 远,郑丙辉,富 国,陆兆华. 三峡水库蓄水初期水生态环境特征分析[J]. 长江流域资源与环境, 2005, 14(6): 781 -784 .
[2] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[3] 陈 诚,陈 雯 . 盐城市沿海的适宜开发空间选择研究[J]. 长江流域资源与环境, 2008, 17(5): 667 .
[4] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[5] 李晓文,方精云,朴世龙. 上海城市土地利用形成、变化及其空间作用机制[J]. 长江流域资源与环境, 2006, 15(1): 34 -40 .
[6] 李加林,许继琴,童亿勤,杨晓平,张殿发. 杭州湾南岸滨海平原土地利用/覆被空间格局变化分析[J]. 长江流域资源与环境, 2005, 14(6): 709 -713 .
[7] 李玉辉,李忠德,张丹丹,李兆林 ,周顺吉. 石林风景名胜区对乡村经济发展的影响[J]. 长江流域资源与环境, 2004, 13(1): 18 -23 .
[8] 黄真理. 国内外大型水电工程生态环境监测与保护[J]. 长江流域资源与环境, 2004, 13(2): 101 -108 .
[9] 杨志荣,吴次芳, 靳相木, 姚秋萍. 基于DEA模型的城市用地经济效益比较研究[J]. 长江流域资源与环境, 2009, 18(1): 14 .
[10] 吴虹月,包维楷,王 安. 外来种入侵对乡土生物多样性的影响机制[J]. 长江流域资源与环境, 2004, 13(1): 40 -46 .