长江流域资源与环境 >> 2015, Vol. 24 >> Issue (08): 1418-1424.doi: 10.11870/cjlyzyyhj201508022

• 自然灾害 • 上一篇    下一篇

基于情景分析的区域洪涝灾害风险评价——以巢湖流域为例

程先富1,2, 戴梦琴1,2, 郝丹丹1, 吴庆双1,2   

  1. 1. 安徽师范大学国土资源与旅游学院, 安徽 芜湖 241003;
    2. 安徽自然灾害过程与防控研究省级实验室, 安徽 芜湖 241003
  • 收稿日期:2014-10-08 修回日期:2015-01-26 出版日期:2015-08-20
  • 作者简介:程先富(1966~),男,教授,博士,主要从事区域环境与自然灾害研究.E-mail:xianfucheng@sina.com
  • 基金资助:
    国家自然科学基金项目(41271516)"流域尺度洪涝灾害风险评估方法研究——以巢湖流域为例"

REGIONAL FLOOD RISK ASSESSMENT BASED ON SCENARIO ANALYSIS——A CASE STUDY OF CHAOHU BASIN

CHENG Xian-fu1,2, DAI Meng-qin1,2, HAO Dan-dan1, WU Qing-shuang1,2   

  1. 1. College of Territorial Resources and Tourism, Anhui Normal University, Wuhu 241003, China;
    2. Anhui Key Laboratory of Natural Disaster Process and Prevention, Wuhu 241003, China
  • Received:2014-10-08 Revised:2015-01-26 Online:2015-08-20

摘要: 洪涝灾害是制约区域粮食安全和社会可持续发展的主要因子之一。在风险识别的基础上,从致灾因子、孕灾环境、承灾体等方面选取评价指标,建立评价指标体系。运用层次分析法确定指标权重,通过情景分析技术从降水、土地利用、人口、GDP等方面构建复合情景;应用GIS空间分析技术构建洪涝灾害风险评价模型,对巢湖流域洪涝灾害风险进行评价。研究结果表明:2020年巢湖流域洪涝灾害危险性由东南部向西北部减小;合肥市区的洪涝灾害易损性最大,和县的易损性最小。巢湖流域东南部洪涝灾害风险最大,西南部的大别山区风险较小,随着重现期的增大,流域的洪涝灾害风险也逐渐增大。模拟灾害发生的情景,并分析不同情景下的洪涝灾害风险,更能体现洪涝灾害的不确定性和变化性,为流域防洪战略决策研究提供科学依据。

关键词: 情景分析, 洪涝灾害, 风险评价, 巢湖流域

Abstract: Flood disaster is one of the main factors restricting regional food security and social sustainable development. The Chaohu Basin is suffering from frequent and severe floods. Floods often take place around rivers and plains, which indicates a higher risk of flooding in these areas. A lot of studies have been done in the field of flood disaster, including flood risk assessment. Methods of flood risk assessment mainly include probability statistics from the historical disaster data, hydrologic and hydraulic models and flood simulation, geo-spatial information technology, the index system, scenarios drivers as well as mathematical method. Based on risk identification, evaluation index is selected and evaluation index system is established from hazard factors, disaster environment and hazard bearing body in this paper. Evaluation indicators are mainly precipitation, terrain, river, flood, land use, population, GDP etc. Evaluation index weights are determined by using the analytic hierarchy process (AHP). Using the Pearson-Ⅲ model, Marko-CA model and ArcGIS spatial analyst tools, flood risk complex scenarios are proposed and presented from different return period precipitation, land use, population and GDP. Based on GIS spatial analysis technology, the analytic hierarchy process and spatial raster data, flood disaster risk assessment model is constructed to evaluate the flood risk in the Chaohu Basin. The results show that flood hazard distribution pattern is reduced from southeast to northwest. The plain area along the Yangtze River of the southeastern basin has the maximum risk. The vulnerability of flood is greater with greater return period. Economic vulnerability of Hefei City is the biggest, followed by Wuwei County but the He Countys vulnerability is smaller. The 30-year flood risk has a maximum of 4.37, the 50-year flood risk has a maximum of 4.49, and the 100-year flood risk maximum value is 4.65. The risk of flood disaster becomes greater with greater return period. Flood risk reduces from southeast to northwest in Chaohu basin in 2020. High risk is in southeast of the Chaohu Basin, and low risk areas are mainly distributed in Dabieshan mountain of southwest of the Chaohu Basin. With the increase of return period, flood disaster risk gradually increases. Through a comprehensive analysis on the influencing factors of flood disasters in the Chaohu Basin, the main causes underlying the flood disaster change is explored. Simulating disaster scenario and analyzing flood risk under different scenarios can reflect flood uncertainty and variability. It also can provide a scientific base for the policy making and implementation of flood prevention and mitigation designs.

Key words: scenario analysis, flood disaster, risk assessment, Chaohu Basin

中图分类号: 

  • X43
[1] 史培军.三论灾害研究的理论与实践[J].自然灾害学报,2002,11(3):1-9.
[2] 黄崇福,郭 君,艾福利,等.洪涝灾害风险分析的基本范式及其应用[J].自然灾害学报,2013,22(4):11-23.
[3] 周成虎,万 庆,黄诗峰,等.基于GIS的洪水灾害风险区划研究[J].地理学报,2000,55(1):15-24.
[4] 盛绍学,石 磊,刘家福,等.沿淮湖泊洼地区域暴雨洪涝风险评估[J].地理研究,2010,29(3):416-422.
[5] 王翠莲,刘 晓.随机利率下离散时间保险风险模型[J].安徽师范大学学报(自然科学版),2007,30(1):19-21.
[6] 刘家福,李 京,刘 荆,等.基于GIS/AHP集成的洪水灾害综合风险评价——以淮河流域为例[J].自然灾害学报,2009,17(6):110-114.
[7] 徐文莉.基于最大熵方法的DaR风险度量模型[J].安徽师范大学学报(自然科学版),2007,30(1):21-24.
[8] 张海玉,程先富,马 武.洪涝灾害经济易损性模糊评价——以安徽沿长江地区为例[J].灾害学,2010,25(1):30-33.
[9] 黄崇福,刘新立,周国贤,等.以历史灾情资料为依据的农业自然灾害风险评估方法[J].自然灾害学报,1998,7(2):1-9.
[10] LUGERI N,KUNDZEWICZ Z W,GENOVESE E,et al.River flood risk and adaptation in Europe-assessment of the present status[J].Mitigation and Adaptation Strategies for Global Change,2010,15(7):621-639.
[11] SINHA R,BAPALU G V,SINGH L K,et al.Flood risk analysis in the Kosi river basin,north Bihar using multi-parametric approach of analytical hierarchy process (AHP)[J].Journal of the Indian Society of Remote Sensing,2008,36(4):335-349.
[12] PANDEY A C,SINGH S K,NATHAWAT M S.Waterlogging and flood hazards vulnerability and risk assessment in Indo Gangetic plain[J].Natural Hazards,2010,55(2):273-289.
[13] FEYEN L,DANKERS R,BÓDIS K,et al.Fluvial flood risk in Europe in present and future climates[J].Climatic Change,2012,112(1):47-62.
[14] 赵思健,黄崇福,郭树军.情景驱动的区域自然灾害风险分析[J].自然灾害学报,2012,21(1):9-17.
[15] 王义成,丁志雄,李 蓉.基于情景分析技术的太湖流域洪水风险动因与响应分析研究初探[J].中国水利水电科学研究院学报,2009,7(1):7-14.
[16] 石 勇,许世远,石 纯,等.基于情景模拟的上海中心城区居民住宅的暴雨内涝风险评价[J].自然灾害学报,2011,20(3):177-182.
[17] 尹占娥,许世远,殷 杰,等.基于小尺度的城市暴雨内涝灾害情景模拟与风险评估[J].地理学报,2010,65(5):553-562.
[18] 陈 实,高 超,黄银兰.巢湖流域极端降水事件的时空变化趋势分析[J].人民黄河,2014,36(5):27-30.
[19] 李 祥,王心源,李玉龙,等.基于灰色一马尔科夫预测模型的巢湖流域洪涝灾害预测研究[J].水文,2006,26(4):43-46.
[20] 贾铁飞,施汶妤,郑辛酉,等.近600年来巢湖流域旱涝灾害研究[J].地理科学,2012,32(1):66-73.
[21] 袁 媛,王心源,李 祥,等.巢湖流域旱涝时空特性分析[J].灾害学,2007,22(2):97-100.
[22] 丁祖芬,朱必翔,吴志传.巢湖地区洪涝灾害成因及减灾抗灾对策[J].安徽农业科学,2000,28(1):39-40.
[1] 向龙, 刘平辉, 杨迎亚. 华东某铀矿区稻米中放射性核素铀污染特征及健康风险评价[J]. 长江流域资源与环境, 2017, 26(03): 419-427.
[2] 孙鸿鹄, 程先富, 陈翼翔, 张媛. 区域洪涝灾害恢复力时空演变研究——以巢湖流域为例[J]. 长江流域资源与环境, 2016, 25(09): 1384-1394.
[3] 黄木易, 何翔. 巢湖流域土地景观格局变化及生态风险驱动力研究[J]. 长江流域资源与环境, 2016, 25(05): 743-750.
[4] 王肖惠, 陈爽, 秦海旭, 管蓓. 基于事故风险源的城市环境风险分区研究——以南京市为例[J]. 长江流域资源与环境, 2016, 25(03): 453-461.
[5] 钱红, 严云志, 储玲, 朱仁, 高俊峰, 蔡永久. 巢湖流域河流鱼类群落的时空分布[J]. 长江流域资源与环境, 2016, 25(02): 257-264.
[6] 孙鸿鹄, 程先富, 戴梦琴, 王祥, 康海迪. 基于DEMATEL的区域洪涝灾害恢复力影响因素及评价指标体系研究——以巢湖流域为例[J]. 长江流域资源与环境, 2015, 24(09): 1577-1583.
[7] 赵源, 黄成敏. 基于RRM的市级土地利用总体规划生态风险评价[J]. 长江流域资源与环境, 2015, 24(07): 1102-1109.
[8] 朱康文, 李月臣, 周梦甜. 基于CLUE-S模型的重庆市主城区土地利用情景模拟[J]. 长江流域资源与环境, 2015, 24(05): 789-797.
[9] 胡冠九, 孙成, 杨敏娜, 陈素兰, 李娟, 王荟, 章勇. 长江江苏段主干断面污染物健康风险评价[J]. 长江流域资源与环境, 2009, 18(8): 771-.
[10] 叶正伟, 朱国传. 洪泽湖流域洪涝灾害演变趋势及其与El Nio事件关系[J]. 长江流域资源与环境, 2009, 18(11): 1086-.
[11] 吕刚,王利兵,刘军,李淑芬. 全氟辛烷磺酰基化合物水生生态风险和人体健康风险评价[J]. 长江流域资源与环境, 2008, 17(6): 904-904.
[12] 胡雄星,韩中豪,张 进,夏 凡,王文华. 黄浦江表层沉积物中重金属污染的潜在生态风险评价[J]. 长江流域资源与环境, 2008, 17(1): 109-109.
[13] 吴开亚, 王玲杰. 巢湖流域大气污染的经济损失分析[J]. 长江流域资源与环境, 2007, 16(6): 781-781.
[14] 欧冬妮,刘 敏,程书波,许世远,侯立军,高 磊. 河口滨岸悬浮颗粒物中多环芳烃分布与风险评价[J]. 长江流域资源与环境, 2007, 16(5): 620-620.
[15] 郭长雷,王丽婧,梅凤乔,郭怀成. 贵阳市环境经济系统协调发展策略分析[J]. 长江流域资源与环境, 2006, 15(4): 427-433.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张昌顺,李 昆,马姜明,郑志新. 施肥对印楝人工林生长及土壤肥力的影响[J]. 长江流域资源与环境, 2007, 16(3): 329 .
[2] 赵 伟,谢德体,刘洪斌,. 重庆市景观格局动态变化分析[J]. 长江流域资源与环境, 2008, 17(1): 47 .
[3] 张 强.
近40年来长江流域水沙变化趋势及可能影响因素探讨
[J]. 长江流域资源与环境, 2008, 17(2): 257 .
[4] 袁旭音. 污染河道的常量和微量元素特征及指示意义[J]. 长江流域资源与环境, 2008, 17(2): 270 .
[5] 杨德伟,陈治谏,倪华勇,蒋 莉,廖晓勇. 基于能值分析的四川省生态经济系统可持续性评估[J]. 长江流域资源与环境, 2006, 15(3): 303 -309 .
[6] 张其成,姚亦锋,蒋成煜. 南京城市滨江带功能演变及现代景观规划研究[J]. 长江流域资源与环境, 2004, 13(1): 30 -34 .
[7] 胡鸿兴,康洪莉,贡国鸿,朱觅辉5,郑文勤5,吴法清,何定富,李振文,耿 栋5. 湖北省湿地冬季水鸟多样性研究[J]. 长江流域资源与环境, 2005, 14(4): 422 -428 .
[8] 白仙富,戴雨芡,史正涛. 拉市海流域胁迫因子及其影响[J]. 长江流域资源与环境, 2006, 15(Sup1): 131 -136 .
[9] 霍 莉,王少平,郑丽波. 基于ArcGIS Engine的污染源数据库系统开发与应用[J]. 长江流域资源与环境, 2007, 16(5): 667 .
[10] 吴之坤, 张长芹,黄 媛,张敬丽,孙宝玲,. 长江上游玉龙雪山植物物种多样性形成的探讨[J]. 长江流域资源与环境, 2006, 15(1): 48 -53 .