长江流域资源与环境 >> 2017, Vol. 26 >> Issue (05): 747-754.doi: 10.11870/cjlyzyyhj201705012

• 生态环境 • 上一篇    下一篇

滇东南峰林湖盆区表层岩溶泉水化学动态变化分析

尹继清, 范弢, 晏朋   

  1. 云南师范大学旅游与地理科学学院, 云南 昆明 650500
  • 收稿日期:2016-10-14 修回日期:2017-01-03 出版日期:2017-05-20
  • 通讯作者: 范弢 E-mail:fantaojx@163.com
  • 作者简介:尹继清(1993~),女,硕士研究生,主要从事岩溶生态水文过程研究.E-mail:852989895@qq.com
  • 基金资助:
    国家自然科学基金地区项目“滇东岩溶高原峰林湖盆水源枯竭机制研究”(41261007);国家自然科学基金地区项目“滇东岩溶高原云南松水源林产水功能恢复机理研究”(41661004)

ANALYSIS ON HYDROCHEMICAL VARIATIONS OF EPIKARST SPRING IN SOUTHEAST YUNNAN PEAK FOREST-LAKE BASIN

YIN Ji-qing, FAN Tao, YAN Peng   

  1. College of Tourism and Geography Science, Yunnan Normal University, Kunming 650500, China
  • Received:2016-10-14 Revised:2017-01-03 Online:2017-05-20
  • Supported by:
    National Natural Science Foundation "Study on the Mechanism of Water Exhaustion of Peak Forest-Lake Basin in the East of Yunnan Karst Plateau"(41261007);National Natural Science Foundation "Study on the Restoration Mechanism of Water-Production Function of Pinus Yunnanensis Water-Source Forest In The East Of Yunnan Karst Plateau"(41661004)

摘要: 为探究不同表层岩溶带岩溶水系统和人类干扰方式下滇东南峰林湖盆区表层岩溶泉地球化学变化特征及其影响因素,利用CTDP300水质检测仪,对不同地质背景下的两泉域的水化学性质从月动态和降雨动态两个尺度进行了一个水文年的观测。结果表明:(1)菜花箐泉理化指标季节动态变幅较大:水温为4.6℃,电导率为302 μs/cm,pH为0.66,水浊度为255.1;火把洞泉变幅相对较小:水温为3.3℃,电导率为225 μs/cm,pH为0.5,水浊度9.8。(2)无雨时:菜花箐泉气温与水温、电导率、pH呈正相关关系;火把洞气温与水温呈现正相关关系,水温与电导率、pH呈现负相关关系。(3)强降雨时:菜花箐泉在降雨初期水温、电导率、水浊度均出现峰值,pH呈现低值。在降雨中后期,电导率大幅度上升,在6 h内从189 μs/cm上升到405 μs/cm,pH出现峰值后呈波动下降趋势。火把洞泉在降雨初期水温与电导率、pH呈正相关关系,各自呈现本期间峰值。在降雨持续10 h后,pH、电导率均呈现下降趋势。(4)弱降雨气候条件下:菜花箐和火把洞泉的理化指标变幅都较小,在降雨初期、中期和后期两泉域pH、电导率都出现稀释效应曲线。

关键词: 表层岩溶带, 滇东南峰林湖盆区, 表层岩溶泉, 水化学

Abstract: In order to explore the hydrochemical change and its influencing factors of epikarst zone under human disturbances in the Southeast Yunnan peak forest-lake basin, we investigated physical and chemical properties of the two spring area in a hydrological year. Results showed that for the Caihuaqing spring, seasonal dynamics of physicochemical indicators had a large amplitude. The water temperature was 4.6 degrees Celsius, the conductivity was 302 μs/cm, pH was 0.66, water turbidity was 255.1. For the Huobadong spring, the seasonal dynamics of the physical and chemical indicators had relatively small variations. The water temperature was 3.3 degrees Celsius, the conductivity was 225μs/cm, pH was 0.5, water turbidity was 9.8. Under normal weather conditions, air temperature and water temperature, conductivity and pH were positively correlated for the Caihuaqing spring. While for the Huobadong spring, air temperature and water temperature were positively correlated, but water temperature was negatively correlated with conductivity and pH. Under the condition of heavy rainfall, the Caihuaqing spring presented peaks of water temperature, conductivity and turbidity while low pH value at the early stage of rainfall. At the late stage of rainfall, the conductivity increased significantly in 6 hours from 189μs/cm to 405 μs/cm, and then maintained a stable upward trend, pH showed a downward trend after the peak. The relationship between water temperature and conductivity, pH was positively correlated with the water temperature in the Huobadong spring, which showed the peak during the period. After 10 hours of rainfall duration, pH and electrical conductivity showed a downward trend. Under the condition of weak rainfall, the Caihuaqing spring and Huobadong spring presented small amplitudes of physicochemical variations. At the early, middle and late stages of rainfall, pH and conductivity of the two springs appeared dilution effect curves.

Key words: epikarst zone, southeast Yunnan peak forest-lake basin, epikarst spring, hydrochemical

中图分类号: 

  • K903
[1] 蒋忠诚,王瑞江,裴建国,等.我国南方表层岩溶带及其对岩溶水的调蓄功能[J].中国岩溶,2001,20(2):106-110.[JIANG Z C,WANG R J,PEI J G,et al.Epikarst zone in south China and its regulation function to karst water[J].Carsologica Sinica,2001,20(2):106-110.]
[2] 苏春田,潘晓东,唐建生,等.环境对湘西洛塔表层岩溶泉水文地球化学特征的影响[J].山地学报,2014,32(2):205-211.[SU C T,PAN X D,TANG J S,et al.Influence of eco-environment on hydrogeochemical of epikarst springs in Luota,West Hunan Province of China[J].Mountain Research,2014,32(2):205-211.]
[3] HESS J W,WHITE W B.Storm response of the karstic carbonate aquifer of southcentral Kentucky[J].Journal of Hydrology,1988,99(3/4):235-252.
[4] YANG P H,YUAN D X,YUAN W H,et al.Formations of groundwater hydrogeochemistry in a karst system during storm events as revealed by PCA[J].Chinese Science Bulletin,2010,55(14):1412-1422.
[5] 徐尚全,杨平恒,殷建军,等.重庆雪玉洞岩溶地下河地球化学敏感性研究[J].环境科学,2013,34(1):77-83.[XU S Q,YANG P H,YIN J J,et al.Research on the sensitivity of geochemical of underground river in Chongqing Xueyu cave[J].Environmental Science,2013,34(1):77-83.]
[6] 曾成,刘再华,赵敏,等.基于谱分析的岩溶地下河系统短时间尺度水化学变化研究[J].水文地质工程地质,2009,36(3):39-44.[ZENG C,LIU Z H,ZHAO M,et al.A study of short-time scale variation in hydrochemistry of karst ground river based on spectrum analysis[J].Hydrogeology&Engineering Geology,2009,36(3):39-44.]
[7] 贾亚男.西南典型岩溶地区土地利用与土地覆被变化对岩溶水质的影响[D].重庆:西南师范大学博士学位论文,2004.[JIA Y N.The effects of land use and land cover changes on karst water quality in three typical karst regions,Southwestern China[D].Chongqing:Doctor Dissertation of Southwest Normal University,2004.]
[8] 张志永,焦剑妮,张伟,等.桂林市岩溶地下水典型污染物演变过程分析[J].水电能源科学,2014,32(2):50-54.[ZHANG Z Y,JIAO J N,ZHANG W,et al.Development process analysis of typical contaminant in Guilin Karst groundwater[J].Water Resources and Power,2014,32(2):50-54.]
[9] 云南省地质局水文工程地质公司丘北分队.中华人民共和国区域水文地址普查报告(1:200000)丘北幅[R].云南省地质局,1981:10-11,135-138.[Yunnan Geological Survey of Hydrological Engineering Geology Company Hill North Division.1:200000 regional hydrological address census of Qiubei[R].Yunnan Province Geological Survey,1981:10-11,135-138.]
[10] 许效天,李广宇,张喜,等.喀斯特森林随降水流动的主要元素动态研究[J].水土保持学报,2008,22(1):134-139.[XU X T,LI G Y,ZHANG X,et al.Main nutrients dynamic along with precipitation of Karst Forest[J].Journal of Soil and Water Conservation,2008,22(1):134-139.]
[11] 邓新辉,蒋忠诚,覃小群,等.广西弄拉岩溶植被的表层水文地球化学效应[J].山地学报,2008,26(2):170-179.[DENG X H,JIANG Z C,QIN X Q,et al.Epi-hydrogeochemical effects of Karst vegetation in Nongla,Guangxi[J].Journal of Mountain Science,2008,26(2):170-179.]
[12] 沈利娜,邓新辉,蒋忠诚,等.表层岩溶带生态系统的水文地球化学效应——以弄拉兰电堂泉域为例[J].地球与环境,2010,38(2):189-197.[SHEN L N,DENG X H,JIANG Z C,et al.Hydrogeochemical effects of Epikarst Zone ecosystem——a case study of the Landiantang Spring catchment in Nongla[J].Earth and Environment,2010,38(2):189-197.]
[13] 王迪,许模,漆继红,等.滇东南丘北区峰丛-洼地地貌形态特征分析[J].中国岩溶,2010,29(3):239-245.[WANG D,XU M,QI J H,et al.Analysis on morphologic features of the peak-cluster depression in Qiubei,Southeast Yunnan[J].Carsologica Sinica,2010,29(3):239-245.]
[14] 章程,蒋忠诚,何师意,等.垂直气候带岩溶动力系统特征研究——以重庆金佛山国家级自然保护区为例[J].地球学报,2006,27(5):510-514.[ZHANG C,JIANG Z C,HE S Y,et al.The Karst dynamic system of vertical zoned climate region:a case study of the Jinfo Mountain state nature reserve in Chongqing[J].Acta Geoscientia Sinica,2006,27(5):510-514.]
[15] LIU Z H,LI Q,SUN H L,et al.Seasonal,diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China:soil CO2 and dilution effects[J].Journal of Hydrology,2007,337(1/2):207-223.
[16] 杨平恒,刘子琦,贺秋芳.降雨条件下岩溶泉水中悬浮颗粒物的运移特征及来源分析[J].环境科学,2012,33(10):3376-3381.[YANG P H,LIU Z Q,HE Q F.Transportation and sources of the suspended particle in a karst spring during a storm event[J].Environmental Science,2012,33(10):3376-3381.]
[17] 于正良,袁道先,杨平恒,等.基于PCA和在线监测技术研究旅游活动对岩溶地下水水化学的影响[J].地球学报,2016,37(2):232-240.[YU Z L,YUAN D X,YANG P H,et al.Influences of tourism activities on hydrochemistry of karst groundwater revealed by principal component analysis and on-line monitoring technique[J].Acta Geoscientica Sinica,2016,37(2):232-240.]
[18] 曾昭霞,刘孝利,王克林,等.桂西北喀斯特区原生林与次生林凋落物储量及持水特性[J].生态学杂志,2011,30(7):1429-1434.[ZENG Z X,LIU X L,WANG K L,et al.Litter standing biomass and water-holding characteristics in typical primary and secondary forests in karst region of northwest Guangxi[J].Chinese Journal of Ecology,2011,30(7):1429-1434.]
[19] 唐益群,张晓晖,周杰,等.喀斯特石漠化地区土壤地下漏失的机理研究——以贵州普定县陈旗小流域为例[J].中国岩溶,2010,29(2):121-127.[TANG Y Q,ZHANG X H,ZHOU J,et al.The mechanism of underground leakage of soil in karst rocky desertification areas-a case in Chenqi small watershed,Puding,Guizhou Province[J].Carsologica Sinica,2010,29(2):121-127.]
[20] 姜光辉,郭芳,于奭.岩溶水系统的水化学曲线及其在水文地质研究中的应用[J].吉林大学学报(地球科学版),2015,45(3):899-907.[JIANG G H,GUO F,YU S.Chemographs of Karst water system and its new application in hydrogeological survey[J].Journal of Jilin University (Earth Science Edition),2015,45(3):899-907.]
[21] 李清艳,何师意,康志强,等.岩溶森林区地下河流域水文地球化学特征研究——以贵州荔波板寨地下河为例[J].中国农学通报,2010,26(21):305-311.[LI Q Y,HE S Y,KANG Z Q,et al.Study on hydrogeochemical features in Karst forest underground river catchment of Banzhai,Libo,Guizhou[J].Chinese Agricultural Science Bulletin,2010,26(21):305-311.]
[1] 任娟, 王建力, 杨平恒, 詹兆君, . 亚高山旅游景区岩溶地下水水化学动态变化及其影响因素[J]. 长江流域资源与环境, 2018, 27(11): 2548-2557.
[2] 张岩, 付昌昌, 毛磊, 龚绪龙, 李向全. 江苏盐城地区地下水水化学特征及形成机理[J]. 长江流域资源与环境, 2017, 26(04): 598-605.
[3] 侯祎亮, 安艳玲, 吴起鑫, 吴旌滔, 黄娟, 段少琼, 刘霄. 贵州省三岔河流域水化学特征及其控制因素[J]. 长江流域资源与环境, 2016, 25(07): 1121-1128.
[4] 韩志伟 刘丛强 吴 攀 汪福顺 王宝利 李思亮 灌 瑾. 大坝拦截对河流水溶解组分化学组成的影响分析——以夏季乌江渡水库为例[J]. 长江流域资源与环境, 2009, 18(4): 361-.
[5] 李俊云,李林立,谢世友,李廷勇,李元庆. 人类活动对川东平行岭谷区岩溶地下水化学性质季节变化的影响[J]. 长江流域资源与环境, 2007, 16(4): 514-514.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈 勇,陈国阶,杨定国. 岷江上游聚落分布规律及其生态特征——以四川理县为例[J]. 长江流域资源与环境, 2004, 13(1): 72 -77 .
[2] 陈正洪,万素琴,毛以伟. 三峡库区复杂地形下的降雨时空分布特点分析[J]. 长江流域资源与环境, 2005, 14(5): 623 -627 .
[3] 张磊,董立新,吴炳方,周万村. 三峡水库建设前后库区10年土地覆盖变化[J]. 长江流域资源与环境, 2007, 16(1): 107 -112 .
[4] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[5] 禹 娜,陈立侨,赵泉鸿. 太湖介形类动物丰度与生物量[J]. 长江流域资源与环境, 2008, 17(4): 546 .
[6] 孔令强. 水电工程农村移民入股安置模式初探[J]. 长江流域资源与环境, 2008, 17(2): 185 .
[7] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[8] 于苏俊,张 继,夏永秋. 基于遗传算法的可持续土地利用动态规划[J]. 长江流域资源与环境, 2006, 15(2): 180 -184 .
[9] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[10] 杨丽霞,杨桂山,苑韶峰. 数学模型在人口预测中的应用——以江苏省为例[J]. 长江流域资源与环境, 2006, 15(3): 287 -291 .