长江流域资源与环境 >> 2017, Vol. 26 >> Issue (04): 598-605.doi: 10.11870/cjlyzyyhj201704013

• 生态环境 • 上一篇    下一篇

江苏盐城地区地下水水化学特征及形成机理

张岩1,2, 付昌昌3, 毛磊1,2, 龚绪龙1,2, 李向全3   

  1. 1. 江苏省地质调查研究院, 江苏 南京 210080;
    2. 国土资源部地裂缝地质灾害重点实验室, 江苏 南京 210080;
    3. 中国地质科学院水文地质环境地质研究所, 河北 石家庄 050061
  • 收稿日期:2016-09-02 修回日期:2016-10-17 出版日期:2017-04-20
  • 通讯作者: 付昌昌 E-mail:fu0936@163.com
  • 作者简介:张岩(1987~),女,硕士,主要从事同位素水文地球化学.E-mail:zhangyan6193@sina.com
  • 基金资助:
    中国地质调查局项目(1212011220005,12120114086601);江苏省地勘基金项目(苏国土资函[2014]842号)

HYDROCHEMICAL CHARACTERISTICS AND FORMATION MECHANISM OF THE GROUNDWATER IN YANCHENG, JIANGSU PROVINCE

ZHANG Yan1,2, FU Chang-chang3, MAO Lei1,2, GONG Xu-long1,2, LI Xiang-quan3   

  1. 1. Geological Survey of Jiangsu Province, Nanjing 210080, China;
    2. Key Laboratory of Earth Fissures Geological Disaster, Ministry of Land and resources, Nanjing 210080, China;
    3. Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
  • Received:2016-09-02 Revised:2016-10-17 Online:2017-04-20
  • Supported by:
    China Geological Survey's Project (1212011220005, 12120114086601);Jiangsu Geological Exploration Fund ([2014]842)

摘要: 为了查明江苏盐城地区深层地下水咸化的主要影响因素,采集了不同类型水样(河水、浅层地下水、深层地下水和海水),通过对该地区不同水体的水化学特征、离子比值以及氘氧氚同位素组成进行分析,研究了盐城地区深层地下水水化学特征的形成机理。结果表明:浅层微咸水主要是溶解地层盐分和蒸发作用形成,而滨海港镇的部分地区受到一定程度的现代海水入侵影响。深层地下水总体为淡水,水化学演化以正常的水-岩作用为主,而深层微咸水主要分布在两个地区,一是东部滨海地区的灌河口至大丰一带,二是内陆地区的大丰市及其周边一带。滨海地区的深层微咸水主要是淋滤古海相地层盐分形成,黄沙港镇部分地区则受到轻微的现代海水入侵影响,而内陆地区的深层微咸水主要是浅层咸水下渗造成的。因此,盐城东部沿海矿化度增高的区域应大力加强对地下水的保护,特别是随着全球变暖,黄海海平面有上升的趋势,东部的滨海港镇等受海水入侵影响较大的区域更应引起高度重视。

关键词: 地下水, 水化学特征, 形成机理, 盐城地区

Abstract: For the purpose of investigating the main factors of deep groundwater salinization in the coastal plain of Yanchen, Jiangsu Province, various water samples (river water, shallow groundwater, deep groundwater and seawater) were collected to analyze their characteristics of hydrochemistry and isotopes. On the basis of the analysis of the environment isotopes (δ18O-δ2H), the characteristics of major hydrochemical composition and the ratios of major ions, the results suggested that dissolving the salts of strata and evaporation are the dominant processes in the evolvement of shallow brackish groundwater, and some shallow brackish samples in Binhaigang areas are possibly affected by seawater intrusion. The distribution of deep brackish groundwater is mainly in two areas; one is located along the coastal areas, while the other is in the inland areas of Dafeng and its surrounding areas. Dissolving salts of ancient marine strata is the major cause for the salinity of the deep confined groundwater in eastern coastal areas; moreover, some deep groundwater may be also influenced by seawater intrusion, such as YC2012 in Huangshagang. Among the inland areas surrounding Dafeng, the deep brackish groundwater is caused by mixing with overlying shallow saline groundwater. The water quality of the deep aquifer in central and western areas is good as a whole, and the hydrochemical evolution is the natural water-rock interaction. Hence, the deep aquifer groundwater in eastern coastal areas where TDS is high should be protected effectively, especially the salified areas such as the town of Binhaigang.

Key words: groundwater, hydrochemical characteristics, formation mechanism, Yancheng area

中图分类号: 

  • P641.12
[1] 黄敬军,陆华.江苏沿海地区深层地下水开发利用现状及环境地质问题[J].水文地质工程地质,2004,31(6):64-68.[HUANG J J,LU H.Aquifers and environmental geological problems in the coastal areas in Jiangsu Province[J].Hydrogeology and Engineering Geology,2004,31(6):64-68.]
[2] 凌家荣,钱庆龙,冯志祥.盐城市地下水资源调查评价[J].水利水电科技进展,2000,20(3):48-50.[LING J R,QIAN Q L,FENG Z X.Groundwater resource investigation and evaluation for Yancheng City[J].Advances in Science and Technology of Water Resources,2000,20(3):48-50.]
[3] 周慧芳,谭红兵,高将,等.南通地区地下水咸化机理分析及改良措施[J].水资源保护,2015,31(4):70-76.[ZHOU H F,TAN H B,GAO J,et al.Analysis of salinization mechanism of groundwater in Nantong area and its improvement measures[J].Water Resources Protection,2015,31(4):70-76.]
[4] KIM Y,LEE K S,KOH D C,et al.Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer:a case study in Jeju volcanic island,Korea[J].Journal of Hydrology,2003,270(3/4):282-294.
[5] MOUSSA A B,ZOUARI K,MARC V.Hydrochemical and isotope evidence of groundwater salinization processes on the coastal plain of Hammamet-Nabeul,north-eastern Tunisia[J].Physics and Chemistry of the Earth,Parts A/B/C,2011,36(5/6):167-178.
[6] CLARK I D,FRITZ P.Environmental isotopes in hydrogeology[M].Boca Raton,FL:CRC Press,1997.
[7] 张东,刘丛强,尹国勋.基于稳定同位素和水化学的内陆地下水咸化过程的研究:以焦作市为例[J].地球与环境,2010,38(2):177-183.[ZHANG D,LIU C Q,YIN G X.Study on inland groundwater salinization based on stable isotope and hydrochemistry:a case study in Jiaozuo City,China[J].Earth and Environment,2010,38(2):177-183.]
[8] 肖国强,杨吉龙,胡云壮,等.秦皇岛洋-戴河滨海平原海水入侵过程水文化学识别[J].安全与环境工程,2014,21(2):32-39.[XIAO G Q,YANG J L,HU Y Z,et al.Hydrogeochemical recognition of seawater intrusion processes in Yang River and Dai River coastal plain of Qinhuangdao City[J].Safety and Environmental Engineering,2014,21(2):32-39.]
[9] 胡云壮,李红,李影,等.山东莱州湾南岸典型剖面海(咸)水入侵过程的水文地球化学识别[J].地质调查与研究,2015,38(1):41-50.[HU Y Z,LI H,LI Y,et al.Hydrogeochemical recognization of seawater intrusion process at the typical profile in Laizhou Bay[J].Geological Survey and Research,2015,38(1):41-50.]
[10] 赵继昌,梁静,蔡鹤生.苏北平原地下咸淡水形成与含水介质的关系[J].水文地质工程地质,1993(3):25-27.[ZHAO J C,LIANG J,CAI H S.Relation between formation of salt-fresh water and water-bearing medium in the plain of Su Bei[J].Hydrogeology and Engineering Geology,1993(3):25-27.]
[11] DANSGAARD W.Stable isotopes in precipitation[J].Tellus,1964,16(4):436-468.
[12] 樊启顺,马海州,谭红兵,等.柴达木盆地西部卤水特征及成因探讨[J].地球化学,2007,36(6):601-611.[FAN Q S,MA H Z,TAN H B,et al.Characteristics and origin of brines in western Qaidam Basin[J].Geochimica,2007,36(6):601-611.]
[13] 徐彦泽,田小伟,郑跃军,等.沧州小山地区地下水的补给研究[J].水文地质工程地质,2009,36(3):51-54.[XU Y Z,TIAN X W,ZHENG Y J,et al.Recharge of groundwater in the Xiaoshan area of Cangzhou[J].Hydrogeology and Engineering Geology,2009,36(3):51-54.]
[14] 周宏春,关继奎,杨谦.苏北盆地地下咸淡水的同位素研究[J].勘察科学技术,1989(3):30-33.[ZHOU H C,GUAN J K,YANG Q.Isotope study of salt and fresh groundwater in Northern Jiangsu Basin[J].Site Investigation Science and Technology,1989(3):30-33.]
[15] CARTWRIGHT I,WEAVER T R,FULTON S,et al.Hydrogeochemical and isotopic constraints on the origins of dryland salinity,Murray Basin,Victoria,Australia[J].Applied Geochemistry,2004,19(8):1233-1254.
[16] EDMUNDS W M,MA J Z,AESCHBACH-HERTIG W,et al.Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin,North West China[J].Applied Geochemistry,2006,21(12):2148-2170.
[17] DAVIS S N,WHITTEMORE D O,FABRYKA-MARTIN J.Uses of chloride/bromide ratios in studies of potable water[J].Ground Water,1998,36(2):338-350.
[18] EDMUNDS W M.Geochemistry's vital contribution to solving water resource problems[J].Applied Geochemistry,2009,24(6):1058-1073.
[19] HAN D M,SONG X F,CURRELL M J,et al.Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay,China[J].Journal of Hydrology,2014,508:12-27.
[1] 任娟, 王建力, 杨平恒, 詹兆君, . 亚高山旅游景区岩溶地下水水化学动态变化及其影响因素[J]. 长江流域资源与环境, 2018, 27(11): 2548-2557.
[2] 李云良, 张小琳, 赵贵章, 姚静, 张奇. 鄱阳湖区地下水位动态及其与湖水侧向水力联系分析[J]. 长江流域资源与环境, 2016, 25(12): 1894-1902.
[3] 龚继文, 李崇明, 程艳茹, 张韵, 赵丽. 基于GMS的山区三维地质模型及应用研究[J]. 长江流域资源与环境, 2016, 25(07): 1135-1141.
[4] 张建伟, 胡克, 岳玮, 刘宝林, 王建, 高擎. 上海城区地面沉降及其对地下水采灌量的响应[J]. 长江流域资源与环境, 2016, 25(04): 567-572.
[5] 刘保强, 熊理然, 蒋梅英, 张磊. 滇池流域生态承载力及系统耦合效应剖析[J]. 长江流域资源与环境, 2015, 24(05): 868-875.
[6] 荆平 贾海峰. 流域地下水质评价的GIS与模型集成分析[J]. 长江流域资源与环境, 2009, 18(3): 248-253.
[7] 向 波,纪昌明,蓝霄峰,罗庆松. 地下水非稳定流问题的有限分析五点格式[J]. 长江流域资源与环境, 2007, 16(6): 721-721.
[8] 孙爱荣,周爱国,梁合诚,鄂 建. 九江市地下水易污性评价——基于DPASTIC指标的模糊综合评价模型[J]. 长江流域资源与环境, 2007, 16(4): 499-499.
[9] 李俊云,李林立,谢世友,李廷勇,李元庆. 人类活动对川东平行岭谷区岩溶地下水化学性质季节变化的影响[J]. 长江流域资源与环境, 2007, 16(4): 514-514.
[10] 刘英华,张世熔, 张素兰, 魏 甦, 肖鹏飞. 成都平原地下水硝酸盐含量空间变异研究[J]. 长江流域资源与环境, 2005, 14(1): 114-118.
[11] 解晓南,许朋柱,秦伯强. 太湖流域苏锡常地区地面沉降若干问题探析[J]. 长江流域资源与环境, 2005, 14(1): 125-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 聂钠, 于坤香. 我国世界自然遗产地旅游业环境经济核算思路[J]. 长江流域资源与环境, 2009, 18(2): 121 .
[2] 曹银贵,王 静,程 烨,刘爱霞,许 宁,郝 银,饶彩霞. 三峡库区土地利用变化与影响因子分析[J]. 长江流域资源与环境, 2007, 16(6): 748 .
[3] 徐俊杰, 何 青, 刘 红, 陈吉余. 2006年长江特枯径流特征及其原因初探[J]. 长江流域资源与环境, 2008, 17(5): 716 .
[4] 游庆龙. 三江源地区1961~2005年气温极端事件变化[J]. 长江流域资源与环境, 2008, 17(2): 232 .
[5] 吴炳方,罗治敏. 基于遥感信息的流域生态系统健康评价——以大宁河流域为例[J]. 长江流域资源与环境, 2007, 16(1): 102 -106 .
[6] 郝红升,李克锋,李然,赵再兴. 取水口高程对过渡型水库水温分布结构的影响[J]. 长江流域资源与环境, 2007, 16(1): 21 -25 .
[7] 刘承良, 田 颖, 梁 滨,5. 武汉城市圈产业经济的系统性分析[J]. 长江流域资源与环境, 2009, 18(1): 1 .
[8] 伍新木,廖 丹,严 瑾. 制度创新:依托武汉建设长江中游城市群[J]. 长江流域资源与环境, 2004, 13(1): 1 -6 .
[9] 李翀,廖文根,彭静,叶柏生. 宜昌站1900~2004年生态水文特征变化[J]. 长江流域资源与环境, 2007, 16(1): 76 -80 .
[10] 张心怡,刘 敏,孟 飞. 基于RS和GIS的上海城建用地扩展研究[J]. 长江流域资源与环境, 2006, 15(1): 29 -33 .