长江流域资源与环境 >> 2019, Vol. 28 >> Issue (08): 2008-2018.doi: 10.11870/cjlyzyyhj201908024

• 自然灾害 • 上一篇    

长江流域极端降水的区域频率及时空特征

胡思1,2,曾祎1,王磊1,2,贺新光1,2*   

  1. (1. 湖南师范大学资源与环境科学学院,湖南 长沙 410081;2. 湖南师范大学地理空间大数据挖掘与应用湖南省重点实验室,湖南 长沙 410081)
  • 出版日期:2019-08-20 发布日期:2019-08-19

Regional Frequencies and Spatio-temporal Characteristics of Extreme Precipitation Over Yangtze River Basin

HU Si1,2, ZENG Yi1, WANG Lei1,2, HE Xin-guang1,2   

  1. (1. College of Resources and Environmental Science, Hunan Normal University, Changsha 410081, China; 2. Key Laboratory of Geospatial Big Data Mining and Application, Hunan Province, Changsha 410081, China)
  • Online:2019-08-20 Published:2019-08-19

摘要: 以长江流域130个气象站点1965~2014年的日降水量资料为基础,应用线性矩以及各种统计检验和空间分析技术对流域极端降水进行区域频率分析和时空特征描绘。研究表明:(1)应用模糊C均值分类和异质性检验,整个长江流域的年最大1、3、7和10日降水序列均可划分为7个一致性子区域。拟合优度检验表明,广义极值分布(GEV)和广义正态分布(GNO)为大部分区域极端降水序列的最佳分布;(2)使用考虑站间依赖性的Monte Carlo模拟评价极端降水增长曲线和分位数估计值的精确性,与站点绝对独立的情况相比,其均方根误差(RMSE)变大,90%的误差界也变宽;(3)每个一致性区域的区域增长曲线及其90%的误差界表明,当重现期小于100年时分位数估计值具有较高的可靠性,在四川盆地和长江中下游地区发生极端降水事件的可能性比较大,易发生高风险洪涝灾害;(4)重现期为100年的极端降水空间分布格局表明,从长江上游到下游的极端降水量逐渐增加,导致长江中下游流域更容易遭受洪涝灾害,这一结果与其区域增长曲线相一致。

Abstract: Based on the observed daily precipitation during 1965-2014 at 130 meteorological stations of the Yangtze river basin, the regional frequencies and spatio-temporal characteristics of extreme precipitation were analyzed by using the L-moments approach, statistical tests and spatial analysis techniques. The results are as follows. (1) The annual maximum 1-, 3-, 7- and 10-day precipitation sequences of the Yangtze River basin can be divided into seven homogeneous sub-regions by fuzzy c-mean classification together with heterogeneity test. The results of Goodness-of-fit measure showed that the GEV and GNO distributions are the optimal distributions for most of the regional extreme precipitation sequences. (2)The accuracy of the extreme precipitation growth curve and quantile estimates was evaluated by using Monte Carlo simulations with inter-station dependence, and the results showed that the root-mean-square errors (RMSE) were bigger and the 90% error bounds were wider with inter-site dependence than those without inter-site dependence for both the regional growth curve and quantile estimates. (3) The regional growth curves with 90% error bands for each homogeneous region showed that the quantile estimates are reliable enough for return periods of less than 100 years, which indicated that extreme precipitation events are highly probable to occur in the middle and lower Yangtze river basin and Szechwan Basin, and hence higher risk of floods. (4) The spatial patterns of annual extreme daily precipitation with return period of 100 years indicated that extreme rainfall increased gradually from the upper reaches to the lower reaches of the Yangtze River, showing higher risks of floods in the middle and lower reaches of the Yangtze River, which was consistent with the regional growth curves.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 解晓南,许朋柱,秦伯强. 太湖流域苏锡常地区地面沉降若干问题探析[J]. 长江流域资源与环境, 2005, 14(1): 125 -131 .
[2] 刘爱霞,刘正军,王 静. 基于PCA变换和神经元网络分类方法的中国森林制图研究[J]. 长江流域资源与环境, 2006, 15(1): 19 -24 .
[3] 李宽意,刘正文,王春忠,王传海,史加达,胡耀辉. 低溶解氧对苦草生长的影响[J]. 长江流域资源与环境, 2006, 15(5): 670 -673 .
[4] 王毛兰,| 胡春华,周文斌,. 丰水期鄱阳湖氮磷含量变化及来源分析[J]. 长江流域资源与环境, 2008, 17(1): 138 .
[5] 梅 艳, 刘友兆, 梁流涛. 基于相对承载力的区域可持续发展研究——以江苏省为例[J]. 长江流域资源与环境, 2008, 17(3): 341 .
[6] 禹 娜,陈立侨,赵泉鸿. 太湖介形类动物丰度与生物量[J]. 长江流域资源与环境, 2008, 17(4): 546 .
[7] 易贤命. 南水北调中线工程中的引江济汉补偿工程[J]. 长江流域资源与环境, 2008, 17(2): 206 .
[8] 陈振杰, 李满春, 刘永学. 基于GIS的桐庐县农村居民点空间格局研究[J]. 长江流域资源与环境, 2008, 17(2): 180 .
[9] 胡建民, 石忆邵. 略论耕地库兹涅茨曲线在我国的适用性[J]. 长江流域资源与环境, 2008, 17(4): 588 .
[10] 李春华,李 宁,史培军. 基于SOM模型的中国耕地压力分类研究[J]. 长江流域资源与环境, 2007, 16(3): 318 .