长江流域资源与环境 >> 2020, Vol. 29 >> Issue (4): 900-910.doi: 10.11870/cjlyzyyhj202004011

• 自然资源 • 上一篇    下一篇

丰水期赣江流域着生藻类群落结构及其与水环境因子的关系

肖妮娜1,2,张萌2*,冯兵2,张敏3,徐军4,刘足根2,张秋根1   

  1. (1. 南昌航空大学环境与化学工程学院,江西 南昌 330063;2. 江西省环境保护科学研究院,江西 南昌 330039;3. 华中农业大学水产学院,湖北 武汉 430070;4: 中国科学院水生生物研究所,湖北 武汉 430072)

  • 出版日期:2020-04-20 发布日期:2020-06-12

Community Structure of Periphytic Algae and Their Relationship to Water Environmental Factors in Ganjiang River Basin During the High Water Period

XIAO Ni-na1,2, ZHANG Meng2, FENG Bing2, ZHANG Min3, XU Jun4, LIU Zugen2, ZHANG Qiu-gen1    

  1. (1.School of Environmental & Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China;2. Jiangxi Academy of Environmental Sciences, Nanchang 330039, China;3. School of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;4.Institute of Hydrobiology, CAS, Wuhan 430072, China)
  • Online:2020-04-20 Published:2020-06-12

摘要: 摘要: 着生藻类在水质监测与水生态健康评价中发挥着重要作用。以江西最大的河流赣江为研究对象,对赣江丰水期着生藻类群落结构及其与环境因子的关系进行研究。选取53个点位对赣江全流域进行着生藻类群落结构的调查研究,共鉴定着生藻3门42属175种,其中硅藻门有23属151种,绿藻门有9属12种,蓝藻门有10属12种。硅藻门舟形藻属为丰水期赣江流域着生藻类优势属,该属生物密度百分比为14.080%。下游着生藻类以硅藻门桥弯藻属和舟形藻属为优势属,该属生物密度百分比分别为13.088%和12.935%;中游着生藻类以硅藻门桥弯藻属为优势属,该属生物密度百分比为12.849%;上游着生藻类以硅藻门异极藻属为优势属,该属生物密度百分比达10.150%。通过蒙特卡罗显著性检验发现,赣江流域下游总氮、溶氧、叶绿素a和电导率对着生藻类有显著影响,中游主要海拔、流速、河宽和总磷对着生藻类有显著影响,上游总氮、河宽、浊度和流速对着生藻类有显著影响。将其与着生藻类群落结构进行冗余分析(RDA),结果发现影响下游着生藻类群落结构的主要水环境因子为叶绿素a和电导率,影响中游、上游着生藻类群落结构的主导水环境因子分别是海拔和总氮。可见赣江流域丰水期下游和上游的着生藻类群落可在一定程度上反映水质状况,中游着生藻类群落结构主要反映的是流域地貌因子。

Abstract: Abstract:In the large high-productive river basin, periphytic algae are the base of the food web for many organisms in the natural ecosystem, and now have been played an important role in monitoring the water quality and assessing the health of aquatic ecosystem in order to manage the river watershed. In the present study, the structure of periphytic algae community and its relationship with water environmental factors were explored throughout the Ganjiang River basin, the largest river in Jiangxi. Fifty-three sampling sites were chosen for the investigation of the periphytic algae community in Ganjiang River during the high water period. Results showed that a total of 175 periphytic algaespecies were identified in Ganjiang River, belonging to 42 genera of 3 phyla. There were 151 species of Bacillariophyta, 12 species of Chlorophyta and 12 species of Cyanophyta in the river, respectively. Navicula was the dominant genus in Ganjiang River basin, occupied 14.080% of periphytic algae genera density. Cymbella and Navicula were the dominant genus in the downstream of Ganjiang River basin, occupied 13.088% and 12.935% of the genera density, respectively. Cymbella was the dominant genus in the midstream, occupied 12.849% of the genera density. Gomphonema was the dominant genus in the upstream, occupied 10.150% of the genera density. The Monte Carlo significance test results showed that the periphytic algae in downstream was significance affected by total nitrogen (TN), dissolved oxygen (DO), Chlorophyll a and conductivity. The periphytic algae in r midstream was significance affected by altitude, velocity, river width, and total phosphorus (TP). The periphytic algae in upstream was significance affected by TN, river width, turbidity and velocity. Redundancy analysis (RDA) was applied to reveal the relationship between periphytic algae community and water environmental factors. Results showed that Chlorophyll a and conductivity were the main factors for periphytic algae communities in the downstream. Altitude and TN were the main factors for periphytic algae communities in the midstream and upstream, respectively. It could be suggested that the water quality was reflected by the community structure of periphytic algae to some extent in the downstream and upstream, but not for the midstream. 

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李中强, 王双玲, 杨梅, 徐. 基于生态敏感性分析的湖泊保护与利用——以湖北省斧头湖为例[J]. 长江流域资源与环境, 2010, 19(06): 714 .
[2] 杨 乐|逯 非,王效科|段晓男|孙滨峰|欧阳志云. 三峡水库上空甲烷浓度时空变化及与水库甲烷通量的关系[J]. 长江流域资源与环境, 2012, 21(02): 209 .
[3] 冷寒冰|马利静|秦 俊. 滨海盐碱地改良对绿地碳汇效益影响的研究[J]. 长江流域资源与环境, 2012, 21(Z2): 75 .
[4] 李 博,唐世浩. 基于TRMM卫星资料分析三峡蓄水前后的局地降水变化[J]. 长江流域资源与环境, 2014, 23(05): 617 .
[5] 戴其文,彭瑜,刘澈元,翟禄新. 猫儿山自然保护区生态受益者支付意愿及影响因素[J]. 长江流域资源与环境, 2014, 23(07): 911 .
[6] 汤爱萍,万金保,李爽. 基于BMPs的鄱阳湖区小流域农村面源污染控制[J]. 长江流域资源与环境, 2014, 23(07): 977 .
[7] 刘远书, 高文文, 侯坤, 杨益. 南水北调中线水源区生态环境变化分析研究[J]. 长江流域资源与环境, 2015, 24(03): 440 .
[8] 赵平伟, 郭萍, 李立印, 舒珺. SPEI及SPI指数在滇西南地区干旱演变中的对比分析[J]. 长江流域资源与环境, 2017, 26(01): 142 -149 .
[9] 郑玉雯,薛伟贤,王 萌. 基于SBM动态网络模型的中国高新区效率评价[J]. 长江流域资源与环境, 2018, 27(01): 31 .
[10] 钟业喜, 傅 钰, 朱治州, 王晓静.  基于母子企业联系的上市公司网络结构研究——以长江中游城市群为例[J]. 长江流域资源与环境, 2018, 27(08): 1725 .