长江流域资源与环境 >> 2021, Vol. 30 >> Issue (3): 689-698.doi: 10.11870/cjlyzyyhj202103016

• 生态环境 • 上一篇    下一篇

基于循环神经网络的洞庭湖水位预测研究

郭燕1,2, 赖锡军1*   

  1. (1.中国科学院南京地理与湖泊研究所/中国科学院流域地理学重点实验室,江苏 南京 210008;2.中国科学院大学资源与环境学院, 北京 100049)
  • 出版日期:2021-03-20 发布日期:2021-04-07

Research on Water Level Prediction of Dongting Lake Based on Recurrent Neural Network

GUO Yan 1,2, LAI Xi-jun 1   

  1. (1. Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Key Laboratory of Basin Geography, Chinese Academy of Sciences, Nanjing 210008,China;2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049,China)
  • Online:2021-03-20 Published:2021-04-07

摘要: 洞庭湖流域分布了3个重要的自然保护区,是我国大型淡水湖泊湿地系统之一,生态资源丰富。水位是维持其生态系统结构、功能和完整性的基础。为预测长江和流域“四水”来水组合影响下的洞庭湖水位变化,该文采用两种循环神经网络方法——长短期记忆(LSTM)和门控循环单元(GRU),构建了洞庭湖水位变化的预测模型。LSTM和GRU 的优势在于能够学习网络的输入和输出之间的长期依赖关系,这对于模拟受上游来水影响的水位累积变化至关重要。模型以湘江、资水、沅江、澧水入湖流量和长江干流宜昌站前期流量作为输入条件,预测洞庭湖不同湖区的水位变化过程。利用1980~2002年水位流量时间序列数据对模型进行测试,2003~2014年数据进行验证,并对两种模型的预测结果进行了比较。结果表明:(1)循环神经网络LSTM和GRU方法均可合理预测洞庭湖水位的变化过程,NSE和R2均为0.91~0.95,各站水位预测的RMSE值为0.41~0.86 m,NSE和R2均为0.91~0.95;(2)LSTM的预测精度稍高于GRU,但GRU计算更高效,是LSTM一个很好的替代方案;(3)模型能够较准确的模拟一次洪水事件,洪水位的预测值与真实值的最大相对误差低于5%;且模型具有较好的多步长时间序列预测能力,有在水文模型应用方面的潜力。

Abstract: Dongting Lake basin is one of the large freshwater wetland system in China, having three important nature reserves. Water level is the basis to maintain the structure, function and integrity of the lake ecosystem. In this study, two special types of recurrent neural network method, Long Short-term Memory (LSTM) and The Gated Recurrent Unit (GRU), were propused to construct the Dongting Lake’s water level prediction model, in order to predict the water level change of Dongting Lake under the synthetical influence of the Yangtze river and the four sub-tributaries in the local catchment. The advantage of the LSTM and the GRU is their ability to learn the long-term dependencies between the provided input and output of the network, whichis important to simulate the cumulative change of water level affected by upstream inflow. The daily flows of five hydrological stations, which located at the stem stream of Yangtze River and the four sub-tributaries in the local catchment, were provided as the model’s input conditions to predict the process of water level change in different Dongting Lake areas. The water level and flow time series from 1980 to 2002 were used to test the model, and the data set from 2003 to 2014 were applied to validate our approach. In addition, the predicted results of the two models were compared. The results show that: (1) Models based on the recurrent neural network methods of LSTM and GRU can reasonably predict the process of water level change in three Dongting Lake areas, both NSE and R2 are 0.91 - 0.95. (2) The accurate of LSTM model is slightly higher than the GRU. It’s worth to say that the GRU model is a good alternative to the LSTM for that the former’s calculation is more efficient than the latter. (3) The model can simulate a flood event more accurately. The maximum relative error between the predicted value of flood level and the real value is less than 5%. Moreover, the model has a good prediction ability of multi-step time series, which underlines the potential of the LSTM for hydrological modelling applications.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈 静, 杨 凯, 张 勇, 赵 军. 灰色协调度模型在产业用水系统分析中的应用[J]. 长江流域资源与环境, 2008, 17(5): 688 .
[2] 肖志强,吴巧娟,樊 明,赵彦锋. 长江上游陇南山区连阴雨时空演变气候特征与灾害风险区划[J]. 长江流域资源与环境, 2014, 23(s): 165 .
[3] 苏国欢, 沙永翠, 熊鹰, 张培育, 徐军. 大坝截流前后金沙江观音岩水电站鱼类群落功能多样性的变化[J]. 长江流域资源与环境, 2015, 24(06): 965 -970 .
[4] 庄汝龙, 宓科娜, 梁龙武. 中国工业废水排放格局及其驱动因素[J]. 长江流域资源与环境, 2018, 27(08): 1765 .
[5] 唐恩斌, 张梅青.  

高铁背景下城市铁路可达性与空间相互作用格局——以江西省为例 [J]. 长江流域资源与环境, 2018, 27(10): 2241 -2249 .

[6] 顾铮鸣, 金晓斌, 沈春竹, 金志丰, 周寅康. 近15a江苏省水源涵养功能时空变化与影响因素探析[J]. 长江流域资源与环境, 2018, 27(11): 2453 -2462 .
[7] 王 冰, 程 婷. 我国中部城市环境全要素生产率的时空演变——基于Malmquist-Luenberger生产率指数分解方法[J]. 长江流域资源与环境, 2019, 28(01): 48 -59 .
[8] 王刚毅, 刘 杰. 基于改进水生态足迹的水资源环境与经济发展协调性评价——以中原城市群为例[J]. 长江流域资源与环境, 2019, 28(01): 80 -90 .
[9] 陈国磊, 田玲玲, 罗静, 蒋亮, 吴益坤, . 长江经济带城市黑臭水体空间分布格局及影响因子[J]. 长江流域资源与环境, 2019, 28(05): 1003 -1014 .
[10] 窦小东, 黄玮, 易琦, 李蒙, 李忠良. LUCC及气候变化对李仙江流域径流的影响[J]. 长江流域资源与环境, 2019, 28(06): 1481 -1490 .