长江流域资源与环境 >> 2021, Vol. 30 >> Issue (12): 2972-2981.doi: 10.11870/cjlyzyyhj202112016

• 生态环境 • 上一篇    下一篇

 鄱阳湖流域浅层地下水硝酸盐氮时空分布特征与来源

董一慧1,2,刘春篁1,2,昝金晶2,李佳乐1,2,郭威1,卫承芳2,楚珺2,孙占学1,2*, Evgeniya Soldatova3, Hirok Chaudhuri4
  

  1. (1.核资源与环境国家重点实验室,东华理工大学,江西 南昌 330013;2.水资源与环境工程学院,东华理工大学,
    江西 南昌 330013;3. 俄罗斯莫斯科沃纳德斯基地球化学与分析化学研究所,俄罗斯 莫斯科 119991;
    4. 印度国立杜尔加布尔理工学院物理系,印度杜尔加布尔 713209)
  • 出版日期:2021-12-20 发布日期:2022-01-07

Spatial and Temporal Distribution Characteristics and Source Analysis of Nitrate in Shallow Groundwater of the Poyang Lake Region

DONG Yi-hui1,2, LIU Chun-huang1,2, ZAN Jing-jing2,LI Jia-le1,2, GUO Wei1,  WEI Cheng-fang2, CHU Jun2, SUN Zhan-xue1,2, SOLDATOVA Evgeniya3, CHAUDHURI Hirok4   

  1. (1. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013,China;
    2. School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013,China;
     3. Vernadsky Institute of Geochemistry and Analytical Chemistry RAS, Moscow 119991, Russia; 
    4. Department of Physics, National Institute of Technology, Durgapur 713209, India)

  • Online:2021-12-20 Published:2022-01-07

摘要: 以鄱阳湖流域为研究区,以区内浅层地下水作为研究对象,对浅层地下水硝酸盐氮分布特征和时空变化规律进行研究并分析来源。浅层地下水中硝酸盐氮浓度在0.5~21.6 mg/L范围内,平均值为7.0 mg/L。丰水期和枯水期,硝酸盐氮浓度分别为0.7~21.6和0.5~15.7 mg/L。高浓度硝酸盐氮主要出现在流域内典型农灌区。水体氢氧同位素特征显示,地表水主要来源为大气降水,受其他补给来源及蒸发作用的混合影响;地下水主要来源为当地大气降水,与地表水发生混合作用,受蒸发作用影响较小。硝酸盐氮氧同位素结果显示降雨、灌溉、土地利用类型、肥料施用是影响研究区浅层地下水中硝酸盐氮浓度及分布的主要因素。贝叶斯模型计算结果显示,土壤氮对地下水硝酸盐氮的贡献率最大,平均贡献率为44.6%;大气降水的贡献率仅次于土壤氮,平均贡献率为28.2%;氮肥,污水和粪便的贡献率分别为19.4%和7.8%。

Abstract: This study took the Poyang Lake Region as the research area and the shallow groundwater was selected as the research object. The distribution characteristics and temporal and spatial variation of nitrate in shallow groundwater in the Poyang Lake Region were studied and source of nitrate in groundwater was analyzed. Nitrate concentration in shallow groundwater was between 0.5-21.6 mg/L with an average of 7.0 mg/L. In the wet and dry seasons,nitrate concentration was 0.7-21.6 mg/L and 0.5-15.7 mg/L, respectively. Groundwater with high concentration of nitrate was mainly found in the typical agricultural irrigation area. The hydrogen and oxygen isotopic characteristics of water samples showed that surface water was mainly from meteoric precipitation, and influenced by other recharge sources and evaporation. Shallow groundwater was mainly recharged by local meteoric precipitation and was mixed with surface water, less affected by evaporation. The results of nitrogen and oxygen isotopic composition of nitrate showed rainfall, irrigation activities, land use type and fertilizer application were major factors affecting the concentration and distribution of nitrate in shallow groundwater in the study area. The calculation results using Bayesian model showed that soil nitrogen had the maximum contribution rate to nitrate in groundwater, with an average contribution rate of 44.6%. Atmospheric precipitation had a secondary contribution rateto nitrate in groundwater with an average contribution rate of 28.2%. The contribution rates of nitrogen fertilizer, sewage and feces were 19.4% and 7.8%, respectively.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张鑫, 陈志刚. 经济增长激励、官员异质性与城市工业污染:以长三角地区为例[J]. 长江流域资源与环境, 2018, 27(07): 1314 .
[2] 郭政, 董平, 陆玉麒, 黄群芳, 马颖忆. 长三角集装箱港口体系演化及影响因素分析[J]. 长江流域资源与环境, 2018, 27(07): 1340 .
[3] 蓝希, 刘小琼, 郭炎, 陈昆仑. “长江经济带”战略背景下武汉城市水环境承载力综合评价[J]. 长江流域资源与环境, 2018, 27(07): 1345 .
[4] 罗能生, 王玉泽.彭郁, 李建明. 长江中游城市群生态效率的空间关系及其协同提升机制研究[J]. 长江流域资源与环境, 2018, 27(07): 1349 .
[5] 刘钢, 刘坤琳, 汪玮茜, 赵爽. 水质感知视角下水库移民满意度分析——基于有序逻辑回归的实证研究[J]. 长江流域资源与环境, 2018, 27(07): 1355 .
[6] 戢晓峰, 刘丁硕. 基于3D理论与SEM的县域交通可达性与空间贫困的耦合机制[J]. 长江流域资源与环境, 2018, 27(07): 1360 .
[7] 张大鹏, 曹卫东, 姚兆钊, 岳洋, 任亚文. 上海大都市区物流企业区位分布特征及其演化[J]. 长江流域资源与环境, 2018, 27(07): 1365 .
[8] 佘颖, 刘耀彬. 国内外绿色发展制度演化的历史脉络及启示[J]. 长江流域资源与环境, 2018, 27(07): 1370 .
[9] 侯雯嘉, 陈长青, 乔辉, 孙新素, 周曙东. 1980~2009年长江下游地区油菜冻害时空特征研究[J]. 长江流域资源与环境, 2018, 27(07): 1375 .
[10] 姚琳, 沈竞, 温新龙, 高超. WRF模式参数化方案对江西山地风电场的风模拟研究[J]. 长江流域资源与环境, 2018, 27(07): 1380 .