长江流域资源与环境 >> 2022, Vol. 31 >> Issue (10): 2230-2245.doi: 10.11870/cjlyzyyhj202210012

• 自然资源 • 上一篇    下一篇

不同电子受体对河岸湿地土壤中甲烷氧化及其关键微生物群落的影响

刘丹1,莫永亮2,彭超1,王保战3,汪家家4,唐贇1,路璐2*   

  1. (1.西华师范大学生命科学学院,四川 南充 637002;2.西华师范大学环境科学与工程学院,四川 南充 637009;
    3.南京农业大学生命科学学院,江苏 南京 210095;4.复旦大学环境科学与工程系,上海 200433)
  • 出版日期:2022-10-20 发布日期:2022-10-27

Impact of Different Electron Acceptors on Methane Oxidation and the Key Microbial Players in the Soil of the Jialing River Riparian Wetland

LIU Dan1, MO Yong-liang2, PENG Chao1, WANG Bao-zhan3, WANG Jia-jia4, TANG Yun1, LU Lu2   

  1. (1. College of Life Sciences, China West Normal University, Nanchong 637002, China;
    2. College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China;
    3. College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
    4. Department of Environmental Science and Engineering, Fudan University,Shanghai 200433, China)
  • Online:2022-10-20 Published:2022-10-27

摘要: 河岸带是水陆环境交错带,环境条件和生态过程复杂。为了探究河岸湿地土壤中不同氧气,以及添加不同电子受体对甲烷氧化过程及其微生物的影响,以嘉陵江流域河岸湿地土壤为研究对象,采用微宇宙培养实验、高通量测序及化学分析等方法,分析了在有氧条件下,以及缺氧条件下加入NO3-、SO42-、水铁矿(Fe(Ⅲ))和针铁矿(Fe(Ⅲ))等不同电子受体处理中土壤的甲烷氧化潜力及关键微生物群落。结果表明湿地土壤在有氧条件下的甲烷氧化速率显著高于缺氧条件下的速率(P<0.05)。缺氧条件下,和加入NO3-、SO42-和水铁矿等电子受体均显著促进甲烷氧化,促进程度排序为:NO3-≈水铁矿> SO42-,而针铁矿抑制了甲烷氧化。缺氧条件下甲烷氧化发生的同时, NO3-、SO42-的浓度显著降低,与甲烷浓度变化呈显著正相关(P<0.05),Fe(Ⅱ)的浓度显著增加,与甲烷浓度变化呈显著负相关(P<0.05)。基于16S rRNA基因测序结果表明有氧条件下,优势的甲烷氧化菌为Methylocystis(占总甲烷氧化菌的37.03%)和Methylomicrobium(27.36%)。而在缺氧环境下,好氧甲烷氧化菌Methylomonas(39.60%)和Methylocystis(21.78%)为优势甲烷氧化菌,并且添加NO3-显著促进了Methylobacter(16.25%)的生长,添加SO42-和Fe(Ⅲ)则显著促进了Methylomonas的生长。网络分析表明50%的核心菌群均参与碳、氮及铁等生物化学循环。好氧和缺氧条件下嘉陵江湿地土壤中的甲烷氧化过程由不同的微生物所驱动,且不同的电子受体对缺氧环境的甲烷氧化潜力及其关键甲烷氧化微生物有显著影响,研究为揭示流域湿地环境中的甲烷氧化过程提供了新的借鉴数据。

Abstract: The aim of the study was to explore the methane oxidation processes in the soil of riparian wetland zone. The role of different electron acceptors in differentiating the methane oxidation potentials and the key microbial players under oxygen-deficiency condition were also determined. The soil collected from the riparian wetland zone of the Jialing River was chosen to reveal the soil methane oxidation rates under aerobic and oxygen-deficiency condition, and the impacts of electron acceptors (NO3-, SO42-, ferrihydrite, goethite) on the methane oxidation rates and the key methane oxidation microorganisms. The microcosm experiment coupled with high-throughput sequencing and chemical analysis was employed in this study. The results showed that the methane oxidation rate under aerobic condition was significantly higher than that under oxygen-deficiency condition (P<0.05). The addition of NO3-, SO42-, and ferrihydrite significantly stimulated the methane oxidation under oxygen-deficiency condition. The order of the stimulation extent was as follows: NO3-≈ferrihydrite > SO42-. In contrast, the addition of the goethite inhibited the methane oxidation. In parallel, the concentration of the electron acceptors NO3-, SO42- decreased with the methane oxidation (P<0.05), and the Fe(Ⅱ) content increased with the methane oxidation under oxygen-deficiency condition. The content changes of all the electron significantly correlated with the methane concentration. Methylocystis (accounting for 37.03% of the total methanotrophs) and Methylomicrobium (27.36%) were the dominant methane oxidizers under the aerobic condition. The aerobic methane oxidizers Methylomonas (39.60%) and Methylocystis (21.78%)were the key methane oxidizers under oxygen-deficiency condition. The addition of NO3-significantly stimulated the growth of Methylobacter (16.25%), whereas the addition of SO42-and Fe(Ⅲ) stimulated the growth of Methylomonas. The result of the network analysis revealed that 50% of core microorganisms were potentially involved in the biochemical cycle of carbon, nitrogen, and iron. The methane oxidation processes under aerobic and oxygen-deficiency were driven by different microbial groups, and different electron acceptors significantly influenced the anerobic methane oxidation potentials and their key methane oxidizers. This study provides new ideas and data for unveiling the methane oxidation mechanisms in watershed wetland environments.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙 晨, 刘 敏. 再分析资料在三峡库区气候效应研究中的应用[J]. 长江流域资源与环境, 2018, 27(09): 1998 -2013 .
[2] 邓鹏鑫, 邴建平, 贾建伟, 王栋. 汉江流域1956~2016年汛期降水时空演变格局[J]. 长江流域资源与环境, 2018, 27(09): 2132 -2141 .
[3] 董捷 魏旭华 陈恩. 土地利用碳排放地域差异下减排责任分摊研究——以武汉城市圈为例[J]. 长江流域资源与环境, , (): 0 .
[4] 赵玉岩, 栾维新, 王 辉, 马 瑜.  

城市核心建成区对邻近新增建设用地影响研究——以长江三角洲为例 [J]. 长江流域资源与环境, 2018, 27(10): 2172 -2181 .

[5] 黄杰龙, 陈秋华, 幸绣程, 王立群.  

中国省域森林公园旅游产业竞争力的时空演化特征及影响因素 [J]. 长江流域资源与环境, 2018, 27(10): 2305 -2315 .

[6] 顾铮鸣, 金晓斌, 沈春竹, 金志丰, 周寅康. 近15a江苏省水源涵养功能时空变化与影响因素探析[J]. 长江流域资源与环境, 2018, 27(11): 2453 -2462 .
[7] 冯 畅, 毛德华, 周 慧, 曹艳敏, 胡光伟. 流域绿水管理博弈建模及应用分析[J]. 长江流域资源与环境, 2018, 27(11): 2505 -2517 .
[8] 周彦锋, 吕大伟, 葛 优, 王晨赫, 刘剑羽, 张 丽, 尤 洋, . 淀山湖河蚬翘嘴红鲌国家级水产种质资源保护区翘嘴鲌产卵场现状[J]. 长江流域资源与环境, 2018, 27(12): 2733 -2739 .
[9] 王 冰, 程 婷. 我国中部城市环境全要素生产率的时空演变——基于Malmquist-Luenberger生产率指数分解方法[J]. 长江流域资源与环境, 2019, 28(01): 48 -59 .
[10] 王刚毅, 刘 杰. 基于改进水生态足迹的水资源环境与经济发展协调性评价——以中原城市群为例[J]. 长江流域资源与环境, 2019, 28(01): 80 -90 .