长江流域资源与环境 >> 2024, Vol. 33 >> Issue (3): 634-645.doi: 10.11870/cjlyzyyhj202403016

• 生态环境 • 上一篇    下一篇

四川盆地逆温特征及其对PM2.5的影响研究

万超悦1,徐婷婷1,2*,王艳1,刘甚蓝1,彭卓豪1 ,姜舒荞1   

  1. (1.成都理工大学生态环境学院,四川 成都 610059;2.四川大学建筑与环境学院,四川 成都 610065)
  • 出版日期:2024-03-20 发布日期:2024-04-03

Study on Inversion Characteristics and Its Influence on PM2.5 in Sichuan Basin

WAN Chao-yue1,XU Ting-ting1,2,WANG Yan1,LIU Shen-lan1,PENGZhou-hao1 ,JIANG Shu-qiao1    

  1. (1.College of Ecological Environment, Chengdu University of Technology,Chengdu  610059, China; 2.College of Architecture and Environment, Sichuan University, Chengdu 610065, China)
  • Online:2024-03-20 Published:2024-04-03

摘要:  基于2000-2020年ERA5逐时温度廓线数据探究了四川盆地逆温特征时空变化,量化了逆温对PM2.5的贡献,分析了成都和宜宾重污染期间逆温特征及边界层结构。空间上,盆地中部逆温频率最大,在15~25%之间,东部和南部地区次之,盆地西北和西南地区最低;盆地逆温厚度季节变化的空间分布差异较小,整体集中在200~350 m之间;逆温强度冬季最强,中部地区逆温强度最大可达0.45 °C/100 m左右。时间上,逆温频率12月至次年4月达到最大,最大可达25%,6~8月最小,逆温厚度3~4月达到最大,多在280.85~400.97 m之间,7~8月最小,逆温强度总体变化不显著,多小于0.4  °C/100 m。四川盆地站点逆温频率、厚度、强度与PM2.5呈正相关,相关系数分别为0.3,0.28和0.25。成都和宜宾逆温特征与PM2.5的拟合关系表明,成都和宜宾逆温厚度分别为376和374 m时,PM2.5平均浓度均达到75μg/m3左右,逆温强度与PM2.5浓度的拟合曲线呈抛物线状。大气重污染期间污染物浓度超标通常与持续深厚逆温层相关。2017年2月,成都16日和19日PM2.5浓度分别达163和157μg/m3,逆温频率和厚度达70%和300 m以上,且均存在双层逆温。2017年1月19日,宜宾PM2.5浓度最大为228μg/m3,当天逆温频率、厚度、强度分别为100%、727.5 m和0.37  °C/100 m。此次大气重污染时期成都和宜宾逆温层下相对湿度达80%~99%,近地表风速小于2 m/s,高湿的强稳定边界层结构有助于一次PM2.5的积累和二次细颗粒物的生成。

Abstract: This study examined the temporal and spatial changes of temperature inversion characteristics in the Sichuan Basin based on ERA5 hourly temperature profile data from 2000 to 2020.The temperature inversion's contribution to PM2.5 was quantified and temperature inversion characteristics and boundary layer structure were examined, during periods of high pollution in Chengdu and Yibin.Geographically, the eastern and southern regions had the highest frequency of temperature inversions (15%–25%), followed by the middle basin, while the northwest and southwest regions had the lowest frequency.The overall concentration of the seasonal change in temperature inversion thickness in the basin was between 200 and 350 m, with little variations in geographic distribution.The highest temperature inversion strength in the central region reached about 0.45  °C/100 m during the winter.The frequency, thickness, and intensity of temperature inversions at stations in the Sichuan Basin were all positively connected with PM2.5, with the correlation coefficients of 0.3, 0.28, and 0.25, respectively.When the temperature inversion thickness in Chengdu and Yibin was 376 m and 374 m, respectively, the average PM2.5 concentration reached about 75 μg/m3, and the fitting curve between temperature inversion intensity and PM2.5 concentration was parabolic, according to the fitting relationship between temperature inversion characteristics and PM2.5.In most cases, a continuous deep inversion layer was linked to high pollutant concentrations during periods of heavy air pollution.The PM2.5 concentration in Chengdu reached 163 μg/m3 and 157 μg/m3 on February 16 and 19, respectively, and the frequency and thickness of temperature inversions reached 70% and greater than 300 m.Additionally, there were double-layer temperature inversions.On January 19, 2017, the maximum concentration of PM2.5 in Yibin was 228μg/m3, and the temperature inversion frequency, thickness and intensity were 100%, 727.5m and 0.37  °C/100 m, respectively.In Chengdu and Yibin, relative humidity under the inversion layer reached 80–99% during this period of high air pollution, while the wind speed was less than 2 m/s near the surface.The formation of secondary fine particles and the buildup of primary PM2.5 were both influenced by the robust, stable boundary layer structure and high humidity.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庄汝龙, 宓科娜, 梁龙武. 中国工业废水排放格局及其驱动因素[J]. 长江流域资源与环境, 2018, 27(08): 1765 .
[2] 崔鑫 靳文佳 王永杰 周立旻 郑祥民. 上海市公园湖泊表层沉积物中汞的特征及其污染评价[J]. 长江流域资源与环境, , (): 0 .
[3] 唐恩斌, 张梅青.  

高铁背景下城市铁路可达性与空间相互作用格局——以江西省为例 [J]. 长江流域资源与环境, 2018, 27(10): 2241 -2249 .

[4] 顾铮鸣, 金晓斌, 沈春竹, 金志丰, 周寅康. 近15a江苏省水源涵养功能时空变化与影响因素探析[J]. 长江流域资源与环境, 2018, 27(11): 2453 -2462 .
[5] 高洁芝, 郑华伟, 刘友兆. 基于熵权TOPSIS模型的土地利用多功能性诊断[J]. 长江流域资源与环境, 2018, 27(11): 2496 -2504 .
[6] 邱 宇, 陈英姿, 饶清华, 林秀珠, 陈文花. 基于排污权的闽江流域跨界生态补偿研究[J]. 长江流域资源与环境, 2018, 27(12): 2839 -2847 .
[7] 王 冰, 程 婷. 我国中部城市环境全要素生产率的时空演变——基于Malmquist-Luenberger生产率指数分解方法[J]. 长江流域资源与环境, 2019, 28(01): 48 -59 .
[8] 郭贯成, 彭紫新, 周志伟. 工业企业类型对工业用地利用效率的影响研究——基于企业类型宏观视角的分类 [J]. 长江流域资源与环境, 2019, 28(02): 241 -249 .
[9] 杨 斌, 王占岐, 姚小薇, 张利国. 鄂西北山区土地利用的地形梯度效应与空间结构特征[J]. 长江流域资源与环境, 2019, 28(02): 313 -321 .
[10] 胡慧芝, 王建力, 王 勇, 龙晓泳. 1990~2015年长江流域县域粮食生产与粮食安全时空格局演变及影响因素分析[J]. 长江流域资源与环境, 2019, 28(02): 359 -367 .