长江流域资源与环境 >> 2025, Vol. 34 >> Issue (09): 2078-.doi: 10.11870/cjlyzyyhj202509015

• 生态环境 • 上一篇    下一篇

鄱阳湖水位变化对湖区 CO2通量的影响

周亚鸣 1,岳遥 1,杨中华 1*,葛鑫博 1,朱政涛 1,2   

  1. (1. 武汉大学水资源工程与调度全国重点实验室,湖北 武汉 430072; 2. 广东省水利水电科学研究院,广东 广州 510000)
  • 出版日期:2025-09-20 发布日期:2025-09-22

Effects of Water Level Changes of Poyang Lake on CO2 Fluxes in the Lake Area

ZHOU Ya-ming1, YUE Yao1, YANG Zhong-hua1, GE Xin-bo1 , ZHU Zheng-tao1,2   

  1. (1. State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China;  2. Guangdong Research Institute of Water Resources and Hydropower, Guangzhou 510000, China)
  • Online:2025-09-20 Published:2025-09-22

摘要: 鄱阳湖特有的水文变化特性强烈影响植被生长分布与微生物代谢,从而影响其自身的碳平衡和温室气体排放。该文构建了二维水动力-DNDC(DeNitrification-DeComposition)模型并采用现场及历史原位观测数据验证,研究了鄱阳湖湖区剧烈的季节性水位波动特征及其对典型生境区(水体、沉水植物区、挺水-湿生植物区)净生态系统 CO2  交换量的影响,并根据 Landsat 遥感影像估算了全湖区的CO2  年通量。研究结果表明:对于鄱阳湖水体和沉水植物区,不同典型水文年的 CO2  年通量基本相同, 而挺水-湿生植物CO2  年通量在各典型年不同,以枯水年最高;3 种生境区的平均CO2  年通量分别为566.4(水体)、972.8(沉水植物区)、3 086.9 kg C/hm2/a(挺水-湿生植物)。年内分布上,水体和沉水植物区在枯-涨-丰-退4个水文时期都呈现为稳定碳源,而挺水-湿生植物在涨、退水期可吸收大量 CO2 。鄱阳湖区 CO2  年通量为 1.66±0.44 g CO2·m-2·d-1,表现为碳源。此外,由于丰水年过高的水位会缩短植物生长时间,导致植被向远离湿地中心的方向演化,若随后的年份为平水年,水位有所降低,可能会减小鄱阳湖湿地的 CO2  排放,有利于发挥生态系统固碳潜力。研究结果明确了年际、年内的水位变化对湿地 CO2  排放的关键作用,加深了碳循环过程中植被介导机制的认识,可为湿地管理提供参考。

Abstract: The unique hydrological variability of Poyang Lake strongly influences the distribution of vegetation growth and microbial metabolism, thereby affecting their carbon balance and greenhouse gas emissions. A two-dimensional hydrodynamic-DNDC (DeNitrification-DeComposition) model was constructed and validated with field and historical in-situ observations to study the dramatic seasonal water level fluctuations in Poyang Lake and the corresponding impact on the net ecosystem CO2 exchange in typical habitat zones (water body, submerged vegetation zone, and emergent aquatic plants-hygrophytes). The annual CO2 flux of the whole lake area was estimated based on Landsat remote sensing images. The results showed that: for the water body and the submerged plants zone, the total annual CO2 fluxes were basically the same for different typical years, whereas the annual CO2 fluxes of the emergent aquatic plants-hygrophytes were different for each typical year, with the highest CO2 emission in the dry year. The average annual CO2 fluxes of the three habitat zones were 566.4 (water body), 972.8 (submerged plant zone), and 3086.9 kg C/hm2/a (emergent aquatic plants-hygrophytes), the annual CO2 emission intensity of the emergent aquatic plants-hygrophytes was the highest. On the intra-annual distribution, the water body and submerged plants zone presented as stable carbon sources in all four hydrological periods of dry-rising-wet-falling, while the emergent aquatic plants-hygrophytes absorbed a large amount of CO2 in the rising and falling periods. The annual CO2 flux of Poyang Lake was 1.66±0.44 g CO2  ·m-2·d-1, which showed a carbon source. In addition, as the excessively high water level in wet years would shorten the plant growth time and lead to the evolution of vegetation in the direction away from the wetland, the CO2 emission from the wetland of Poyang Lake might be reduced for the condition of following average hydrological years with reduced water levels. The results of this paper clarified the key role of inter-annual and intra-annual water level changes on wetland CO2 emissions, which deepened the understanding of vegetation-mediated mechanisms in the carbon cycle process, and provided references for wetland management.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!