长江流域资源与环境 >> 2015, Vol. 24 >> Issue (05): 809-815.doi: 10.11870/cjlyzyyhj201505013

• 自然资源 • 上一篇    下一篇

考虑齐口裂腹鱼产卵需求的山区河流生态基流过程确定

李永, 卢红伟, 李克锋, 李嘉, 梁瑞峰   

  1. 四川大学水力学国家重点实验室, 四川 成都 610065
  • 收稿日期:2014-04-16 修回日期:2014-06-20 出版日期:2015-05-20
  • 作者简介:李永(1969~),男,副研究员,主要从事水资源保护及生态修复方面研究.E-mail:li_yong@scu.edu.cn
  • 基金资助:
    四川省科技厅科技支撑资助项目(2012SZ0044)

DETERMINATION OF ECOLOGICAL BASE FLOW PROCESS OF MOUNTAINOUS RIVERS BY TAKING INTO ACCOUNT THE PRENANT'S SCHIZOTHORACIN'S SPAWNING REQUIREMENTS

LI Yong, LU Hong-wei, LI Ke-feng, LI Jia, LIANG Rui-feng   

  1. State Key Laboratory of Hydraulics and MountainRiver Engineering, SichuanUniversity, Chengdu 610065, China
  • Received:2014-04-16 Revised:2014-06-20 Online:2015-05-20
  • Contact: 梁瑞峰 E-mail:iangruifeng@scu.edu.cn

摘要: 在原型观测的基础上, 应用生态水力学法与生境模拟法, 建立对考虑齐口裂腹鱼产卵需求的山区河流水电工程生态基流过程的确定方法, 并以四川中型山区河流杂谷脑河薛城电站为背景, 对所构建方法进行应用分析。通过原型观测, 对生态水力学的齐口裂腹鱼生境水力参数标准在杂谷脑河应用的适宜性进行分析;应用生态水力学方法, 对不同河道流量下薛城电站减水河段的齐口裂腹鱼生境水力参数进行数值模拟, 根据模拟结果, 结合齐口裂腹鱼生境水力参数标准, 分析得到薛城电站满足其生存的最小下泄流量;应用生境模拟法, 对齐口裂腹鱼产卵期不同河道流量下薛城电站减水河段集中产卵场的可利用生境面积进行计算, 得到最大可利用生境面积对应的下泄流量。综合最小下泄流量值与最大可利用生境面积所对应的下泄流量值, 考虑齐口裂腹鱼产卵对水文情势的要求, 建立薛城电站考虑齐口裂腹鱼产卵需求的生态基流过程。采用所构建方法得到的考虑鱼类产卵需求的水电工程生态基流过程, 由于考虑了鱼类生存对最低流量以及产卵对水文情势的要求, 能更好地满足鱼类产卵需求, 可作为电站运行调度的约束。

关键词: 齐口裂腹鱼产卵需求, 生态基流过程, 生态水力学法, 生境模拟法, 杂谷脑河

Abstract: For the purpose of protecting fishes, the ecological base flow process of hydropower projects on mountainous rivers was studied by taking into account the Prenant's schizothoracin spawning requirements. On the basis of prototype observation and by using the ecological hydraulic method and habitat simulation method, the determination method of this kind of ecological base flow process was established. The established method was applied and analyzed by using the Xuecheng Hydropower Station on the Zagunao River as the background which is a medium mountainous river in Sichuan Province. By using the prototype observation method, the suitability of the standards for hydraulic parameters of fish habitats was analyzed. By using the ecological hydraulic method, the hydraulic parameters of fish habitats at the water reducing reach of the Xuecheng Hydropower Station at different flow rates were numerically simulated. In this paper, 11 conditions were taken into consideration, including a site investigation condition and 10 simulation conditions of different flow conditions. The investigation reflected hydrological conditions and habitat characteristics of actual situation, and provided a comparison to simulation conditions. And the concentration of spawning period of fish was selected as the investigation period. According to the simulation results and in combination with the standards for hydraulic parameters of fish habitats, the minimum discharge volume for the survival of fishes in the Xuecheng Hydropower Station was obtained. The minimum discharge volume was 17.43 m3/s, if the flow is lower than this number, the quality of fish habitat would be affected. By using the habitat simulation method, the available habitat area of the centralized spawning site in the water reducing reach of the Xuecheng Hydropower Station at different flow rates during the spawning period was calculated, and the discharge volume corresponding to the maximum available habitat area was obtained. When the peak flow in river coursed at 20.91 m3/s, the WUA of fishing spawning area in the Xuecheng Hydropower Station would be maximized. When the flow was less than 20.91 m3/s, the WUA would reduce. By integrating the minimum discharge volume and the discharge volume corresponding to the maximum available habitat area and by considering the requirements of hydrological regime required by spawning, the ecological base flow process required for the spawning was established for the Xuecheng Hydropower Station. Due to the consideration of the requirements of minimum flow rate by fish survival and the requirements of hydrological regime by spawning, the established ecological base flow process of hydropower projects which takes into account the spawning requirements can better meet the spawning requirements of fishes, and can be used as the constraints for the operation and dispatching of a hydropower station.

Key words: Prenant's schizothoracin, spawning requirements of fishes, ecological base flow process, ecological hydraulics method, habitat simulation method, Zagunao River

中图分类号: 

  • TV213.4
[1] ARMSTRONG J D, KEMP P S, KENNEDY G J A, et al.Habitat requirements of Atlantic salon and brown trout in river andstreams[J].Fisheries Research, 2003, 62(2):143-170.
[2] 郭利丹, 夏自强, 林虹, 等.生态径流评价中的Tennant法应用[J].生态学报, 2009, 29(4):1787-1792.
[3] TENNANT D L.Instream flow regimes for fish, wildlife, recreation and related environmental resources[J].Fisheries, 1976, 4(4):6-10.
[4] MOSELY M P.The effect of changing discharge on channalmor-phology and instream uses and in a braide river, Ohau River, New Zealand[J].Water Resources Researches, 1982, (18):800-812.
[5] 杨志峰, 于世伟, 陈贺, 等.基于栖息地突变分析的春汛期生态需水阈值模型[J].水科学进展, 2010, 21, (4):567-574.
[6] 刘丙军, 陈晓宏, 雷洪成, 等.流域水资源供需系统演化特征识别[J].水科学进展, 2011, 22(3):331-336.
[7] XIONG Z G.Super convergence of the continuous Galerkin finite element method for delay-differential equation with several terms[J].Journal of Computationaland Applied Mathematics, 2007, 198(1):160-166.
[8] CLARK J S, RIZZON D M, WATZIN M C, et al.Spatial distribution and geomorphic condition of fish habitat in streams:an analysis using hydraulic modelling and geostatistics[J].River Research and Applications, 2008, 24(7):885-899.
[9] HAI P T, MASUMOTO T, SHIMIZU K.Development of a two-dimensional finite element model for inundation processes in the Tonle Sap and its environs[J].Hydrological Processes, 2008, 22(9):1329-1336.
[10] GALAGHEI.Use of two dimensional hydrodynamic modeling to evaluate channel rehabilitation in the Trinity River California[R].Fish and Wildlife Service, 1999.
[11] 郭文献, 夏自强, 王远坤, 等.三峡水库生态调度目标研究[J].水科学进展, 2009, 20(4):554-559.
[1] 王玉蓉,李嘉| 李克锋,芮建良. 雅砻江锦屏二级水电站减水河段生态需水量研究[J]. 长江流域资源与环境, 2007, 16(1): 81-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李崇明,黄真理. 三峡水库入库污染负荷研究(Ⅱ)——蓄水后污染负荷预测[J]. 长江流域资源与环境, 2006, 15(1): 97 -106 .
[2] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[3] 李 佳,李思悦,谭 香,张全发. 南水北调中线工程总干渠沿线经过河流水质评价[J]. 长江流域资源与环境, 2008, 17(5): 693 .
[4] 邹丽敏, 王 超, 冯士龙. 玄武湖沉积物中重金属污染的潜在生物毒性风险评价[J]. 长江流域资源与环境, 2008, 17(2): 280 .
[5] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[6] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[7] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[8] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[9] 陈 爽,王 进,. 太湖流域城市化水平及外来人口影响测评[J]. 长江流域资源与环境, 2004, 13(6): 524 -529 .
[10] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .