长江流域资源与环境 >> 2015, Vol. 24 >> Issue (06): 994-1002.doi: 10.11870/cjlyzyyhj201506014

• 农业发展 • 上一篇    下一篇

基于地块尺度的耕地非农化驱动力空间异质性研究——以武汉市为例

张孝宇1, 赖宗裕2, 张安录1   

  1. 1. 华中农业大学土地管理学院, 湖北 武汉 430070;
    2. 国立政治大学地政系, 台湾 台北 11605
  • 收稿日期:2014-05-08 修回日期:2014-07-13 出版日期:2015-06-20
  • 作者简介:张孝宇(1987~ ),女,博士研究生,主要研究方向为土地资源可持续利用.E-mail:zhangxy2005@webmail.hzau.edu.cn*
  • 基金资助:
    国家自然科学基金项目(71373095);教育部人文社科重大攻关项目(14J2D009);国家自然科学基金项目(71341040);湖北省国土资源科技发展计划项目成果(GTZYKJ2013A01);湖北省高校优秀中青年科技创新团队(T201012);国家自然科学基金项目(71103072)资助;教育部人文社科基金(13YJC630016)

SPATIAL HETEROGENEITY IN DRIVING FORCES OF FARMLAND CONVERSION BASED ON PATCH SCALE——A CASE STUDY OF WUHAN CITY

ZHANG Xiao-yu1, LAI Tsung-yu2, ZHANG An-lu1   

  1. 1. College of Land Management, Huazhong Agricultural University, Wuhan 430070, China;
    2. Department of Land Economics, National Chengchi University, Taipei 11605, Taiwan
  • Received:2014-05-08 Revised:2014-07-13 Online:2015-06-20
  • Contact: 张安录 E-mail:zhanganlu@mail.hzau.edu.cn

摘要: 土地用途管制和基本农田保护制度下,耕地非农化概率值和其驱动力的空间作用强度分布在土地资源配置和耕地保护方面有积极的指示性。基于武汉市2000~2011年耕地非农化地块的微观数据,通过比较分析Logistic回归模型和地理加权Logistic回归模型参数估计结果,验证了耕地非农化驱动力的空间异质性,并对异质性的空间分布规律和政策涵义做出总结分析。研究表明:①耕地间的空间依赖效应和建设用地对耕地的空间溢出效应在耕地非农化过程中具有显著影响力,且耕地非农化驱动力存在显著的空间异质性;②地理加权Logistic回归模型由于考虑到数据的空间非平稳状态所以比Logistic回归模型有更好的拟合效果;③耕地非农化驱动力的异质性在空间上呈现出一定规律,这些受到产业布局、经济和城市发展特点等的影响,根据不同驱动力空间异质性产生的原因进行差异化土地管理可以解决耕地保护和建设用地供给间的矛盾。研究结果能从地块尺度上反映出耕地非农化驱动因素的空间异质性,实现了驱动因素作用强度空间分布的可视化,并能为国土资源差异化管理提供理论和实践参考。

关键词: 耕地非农化, 空间异质性, 驱动力, 地理加权logistic回归, 武汉市

Abstract: Farmland conversion is one of the main characteristics of land use at the stage of rapid development of economy, and it is a way for realizing the urbanization and industrialization. Since farmland conversion is unavoidable, that the contradiction between farmland conservation and economic development becomes sharp in the current stage of economic development. Probability of farmland conversion has a positive indication to allocation of land resources and farmland protection under the background of land use regulation and prime farmland preservation. Logistic regression model is typically based on the hypothesis that force of each factor in space is homogeneous. However, there are more and more theoretical and empirical evidences showing that effects of driving forces of farmland conversion are actually different in space. Theoretically, locations of farmland are relatively fixed while effort of driving forces is non-stationary in space, which would cause spatial heterogeneous of driving forces of farmland conversion. In this paper, we established two models to evaluate driving forces of farmland conversion and the spatial heterogeneous of driving forces. We used logistic regression model firstly and then geographically weighted logistic regression model. Then the prediction accuracy of the two models were compared. We took Wuhan as a typical city and used the land use data and GIS data of public facilities, environmental and economics from 2000 to 2011 based on patch scale. Based on the analysis, the main conclusions are as follows. Firstly, based on the estimation results of the logistic regression models, spatial dependence between farmland and spatial spillover of construction land to farmland had a significant effects on the probability of farmland conversion, which indicates that farmland conversion presened probably local rather than global. Based on the estimation results of the geographically weighted logistic regression model, environment and public facilities, characteristics of social and economic and land use policy had different effects on the probability of farmland conversion in space, but there was no difference in the directivity. Both estimation results of the two models show that driving forces of farmland conversion performed spatial heterogeneous. Secondly, geographically weighted logistic regression model was better fitting and better predictive accuracy than logistic regression model. Because geographically weighted logistic regression model has a more realistic hypothesis as the model foundation. Geographically weighted logistic regression model could deal with patch scale data of farmland conversion while geographically weighted regression model could only deal with large scale statistical data. Thirdly, spatial heterogeneity of driving forces presented a certain law, and the law of distribution in space was affected by industrial layout, preference of economic and urban development, etc. According to the causation of spatial heterogeneity of driving forces, differentiation land management policies could partly resolve conflict between farmland protection and construction land supply. The research results reveal the spatial heterogeneity of driving forces of farmland conversion and achieve the spatial heterogeneity visualization. The conclusions provide a theoretical and practical reference to differentiation land management policies.

Key words: farmland conversion, spatial heterogeneity, driving force, geographically weighted logistic regression, Wuhan city

中图分类号: 

  • F301.24
[1] 刘旭华,王劲峰,刘纪远,等.国家尺度耕地变化驱动力的定量分析方法[J].农业工程学报,2005(4):56-60.
[2] 李景刚,何春阳,史培军,等.近20年中国北方13省的耕地变化与驱动力[J].地理学报,2004(2):274-282.
[3] 朱会义,何书金,张 明.环渤海地区土地利用变化的驱动力分析[J].地理研究,2001(6):669-678.
[4] 郭 杰,欧名豪,刘 琼,等.江苏省耕地资源动态变化及驱动力研究[J].长江流域资源与环境,2009(2):139-145.
[5] 文继群,濮励杰,张润森.耕地资源变化的空间计量及其驱动力分析——以江苏省为例[J].长江流域资源与环境,2011(5):628-634.
[6] 余蓉蓉,王克林,岳跃民.桂西北河池地区耕地变化及其驱动力Logistic回归分析[J].长江流域资源与环境,2010(2):186-191.
[7] 张希彪,周天林,上官周平,等.黄土高原耕地变化趋势及驱动力研究——以甘肃陇东地区为例[J].干旱区地理,2006(5):731-735.
[8] WU Q,LI H,WANG R,et al.Monitoring and predicting land use change in Beijing using remote sensing and GIS[J].Landscape and Urban Planning,2006,78(4):322-333.
[9] 摆万奇.深圳市土地利用动态趋势分析[J].自然资源学报,2000(2):112-116.
[10] VERBURG P H,SOEPBOER W,VELDKAMP A,et al.Modeling the spatial dynamics of regional land use:The CLUE-S model [J].Environmental management,2002,30(3):391-405.
[11] WHITE R,ULJEE I,ENGELEN G.Integrated modelling of population,employment and land-use change with a multiple activity-based variable grid cellular automaton[J].International Journal of Geographical Information Science,2012,26(7):1251-1280.
[12] YANG X,ZHENG X Q,LV L N.A spatiotemporal model of land use change based on ant colony optimization,Markov chain and cellular automata[J].Ecological Modelling,2012,233:11-19.
[13] ATKINSON P M,GERMAN S E,SEAR D A,et al.Exploring the relations between riverbank erosion and geomorphological controls using geographically weighted logistic regression[J].Geographical Analysis,2003,35(1):58-82.
[14] 刘旭华,王劲峰,刘明亮,等.中国耕地变化驱动力分区研究[J].中国科学(D辑:地球科学),2005(11):1087- 1095.
[15] 曹银贵,袁 春,周 伟,等.中国耕地变化的驱动因子及其省域差异分析[J].中国土地科学,2008(2):17-22.
[16] 肖思思,吴春笃,储金宇.近15年中国耕地驱动因素的空间差异分析[J].中国土地科学,2013(7):55-61.
[17] 苑韶峰,杨丽霞,杨桂山,等.耕地非农化的社会经济驱动因素异质性研究——基于STIRPAT和GWR模型的实证分析[J].经济地理,2013(5):137-143.
[18] OSBORNE P E,SUÓREZ-SEOANE S.Should data be partitioned spatially before building large-scale distribution models?[J].Ecological Modelling,2002,157(2):249-259.
[19] BRUNSDON C,FOTHERINGHAM A S,CHARLTON M E.Geographically weighted regression:a method for exploring spatial nonstationarity[J].Geographical analysis,1996,28(4):281-298.
[20] LESAGE J P.Spatial econometrics[M].Regional Research Institute,West Virginia University,1999.
[21] FOTHERINGHAM A S,BRUNSDON C,CHARLTON M.Geographically weighted regression:The analysis of spatially varying relationships[M].Wiley,2003.
[22] CLEVELAND W S.Robust locally weighted regression and smoothing scatter plots[J].Journal of the American statistical association,1979,74(368):829-836.
[23] IRWIN E G,BOCKSTAEL N E.Interacting agents,spatial externalities and the evolution of residential land use patterns[J].Journal of economic geography,2002,2(1):31-54.
[24] ZHOU B,KOCKELMAN K M.Neighborhood impacts on land use change:A multinomial logit model of spatial relationships[J].The Annals of Regional Science,2008,42(2):321-340.
[25] 万胜超,王良健,刘 敏.基于空间的省际农地非农化驱动因素研究[J].经济地理,2012(7):123-128.
[26] LUO J,YU D,XIN M.Modeling urban growth using GIS and remote sensing[J].GIScience & Remote Sensing,2008,45(4):426-442.
[27] SAEFUDDIN A,SETIABUDI N A,FITRIANTO A.On Comparison between Logistic Regression and Geographically Weighted Logistic Regression:with Application to Indonesian Poverty Data[J].World Applied Sciences Journal,2012,19(2):205-210.
[1] 董立宽, 方斌, 施龙博, 马鑫雨, 郑俊. 茶园土壤速效磷乡镇尺度下空间异质性对比分析——以江浙地区优质名茶种植区为例[J]. 长江流域资源与环境, 2016, 25(10): 1576-1584.
[2] 翟天林, 金贵, 邓祥征, 李兆华, 王润. 基于多源遥感影像融合的武汉市土地利用分类方法研究[J]. 长江流域资源与环境, 2016, 25(10): 1594-1602.
[3] 李云良, 许秀丽, 赵贵章, 姚静, 张奇. 鄱阳湖典型洲滩湿地土壤质地与水分特征参数研究[J]. 长江流域资源与环境, 2016, 25(08): 1200-1208.
[4] 凌赛广, 焦伟利, 龙腾飞, 刘慧婵, 易予晴, 武盟盟, 王威, 何国金. 2000~2014年武汉市城市扩展时空特征分析[J]. 长江流域资源与环境, 2016, 25(07): 1034-1042.
[5] 柯新利, 李红艳, 刘荣霞. 武汉市耕地景观游憩功能与可达性的空间匹配格局[J]. 长江流域资源与环境, 2016, 25(05): 751-760.
[6] 张雪茹, 尹志强, 姚亦锋, 胡美娟, 洪永胜. 安徽省城市建设用地变化及驱动力分析[J]. 长江流域资源与环境, 2016, 25(04): 544-551.
[7] 卢燕, 余斌, 韩勇. 基于客流结构的高铁经济辐射效应研究——以武汉市为例[J]. 长江流域资源与环境, 2016, 25(01): 39-47.
[8] 马才学, 赵利利, 柯新利. 湖北省耕地非农化压力的时空演变格局[J]. 长江流域资源与环境, 2016, 25(01): 71-78.
[9] 陈宇, 单玉红, 陈银蓉. 碳氧平衡约束下武汉市土地利用结构优化情景模型研究[J]. 长江流域资源与环境, 2015, 24(12): 2030-2037.
[10] 何建华, 王宵君, 杜超, 李纯, 施璇. 武汉城市圈土地利用变化系统仿真模拟与驱动力分析[J]. 长江流域资源与环境, 2015, 24(08): 1270-1278.
[11] 刘莉, 邓欧平, 邓良基, 辜莉娟. 2003~2011年四川省各市(州)农业水足迹时空变化与驱动力研究[J]. 长江流域资源与环境, 2015, 24(07): 1133-1141.
[12] 丁镭, 方雪娟, 赵委托, 程胜高. 城市化进程中的武汉市空气环境响应特征研究[J]. 长江流域资源与环境, 2015, 24(06): 1038-1045.
[13] 张孝宇, 张安录. 武汉市耕地非农化的空间自相关分析[J]. 长江流域资源与环境, 2015, 24(05): 781-788.
[14] 李 灿| 陈正洪. 武汉市主要年气候要素及其极值变化趋势[J]. 长江流域资源与环境, 2010, 19(01): 37-.
[15] 孙洪波, 杨桂山, 万容容, 吴业. 昆山生态系统服务价值变化及其驱动力差异性分析[J]. 长江流域资源与环境, 2009, 18(8): 759-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[3] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[4] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[5] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[6] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[7] 张代钧,许丹宇,任宏洋,曹海彬,郑 敏,刘惠强. 长江三峡水库水污染控制若干问题[J]. 长江流域资源与环境, 2005, 14(5): 605 -610 .
[8] 黄 峰 魏 浪 李 磊 朱 伟. 乌江干流中上游水电梯级开发水温累积效应[J]. 长江流域资源与环境, 2009, 18(4): 337 .
[9] 胡鸿兴, 张岩岩, 何伟, 田蓉, 钟鑫, 韩世松, 李思思, 王俊杰陈文方, 杨阳, 陈侈, 邓晗, 文英, 崔雅婷, 李茜,  王璇, 彭菁菁, 高鑫, 唐义. 神农架大九湖泥炭藓沼泽湿地对镉(Ⅱ)、铜(Ⅱ)、铅(Ⅱ)、锌(Ⅱ)的净化模拟[J]. 长江流域资源与环境, 2009, 18(11): 1050 .
[10] 王肇磊, 贺新枝. 晚清时期湖北自然灾害的治理及其经验教训[J]. 长江流域资源与环境, 2009, 18(11): 1080 .