长江流域资源与环境 >> 2015, Vol. 24 >> Issue (09): 1477-1482.doi: 10.11870/cjlyzyyhj201509006

• 自然资源 • 上一篇    下一篇

淠河流域不同强度等级降水变化研究

李远平1,2, 朱诚1, 马春梅1, 张广胜2   

  1. 1. 南京大学地理与海洋科学学院, 江苏 南京 210093;
    2. 皖西学院资源环境与旅游管理系, 安徽 六安 237012
  • 收稿日期:2014-12-01 修回日期:2014-12-29 出版日期:2015-09-20
  • 作者简介:李远平(1978~),女,副教授,主要从事气候变化及环境影响研究.E-mail:lyping@wxc.edu.cn
  • 基金资助:
    国家自然科学基金项目(41171163);安徽省高校省级自然科学重点项目(KJ2011A274,KJ2012A276,KJ2013A256);安徽省软科学研究计划项目(1302053071);自然灾害过程与防控研究安徽省重点实验室开放基金(ZH201306);安徽省人文地理学重点学科项目

Study on changes of different-class precipitation in intensity in pi river valley

LI Yuan-ping1,2, ZHU Cheng1, MA Chun-mei1, ZHANG Guang-sheng2   

  1. 1. School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China;
    2. Department of Environment and Tourism Management, West Anhui University, Lu'an 237012, China
  • Received:2014-12-01 Revised:2014-12-29 Online:2015-09-20

摘要: 淠河流域降水时空变率大,深入分析不同强度等级降水的特征和变化,对于全面揭示研究区气候变化、合理有效利用水资源、防治洪旱灾害具有十分重要的意义。基于淠河流域12个气象站1958~2012年逐日降水资料,分析年、季不同级别降水量(频次)的变化特点,以及主汛期(5~9月)连续3 d最大降水量的概率分布。结果表明,淠河流域小雨量(频次)四季分布比较均匀,级别越高,降水频次越少,分布越集中,夏季暴雨多发。淠河流域年总降水量增加趋势不显著,总降水频次则显著减少。夏季各级别降水量(频次)均呈增加趋势,其中暴雨增加最显著,冬季总降水频次无明显趋势变化,小雨、中雨量增加显著,春、秋季总降水频次和小雨频次的减少趋势极其显著。淠河流域暴雨量、暴雨频次均在1968年发生增多突变,小雨频次在1975年有极显著减少突变,年总降水量有增多突变,总降水频次则有减少突变。自20世纪70年代后期以来,研究区主汛期连续3d极端强降水出现概率加大,不同重现期极值增大,洪涝灾害风险加剧。

关键词: 分级降水, 降水量, 降水频次, 持续性强降水, 淠河流域

Abstract: Pi River located in the west of Anhui Province is the largest tributary of the Huaihe River at its south bank. The spatial and temporal change of precipitation is very obvious in Pi River Valley. Meanwhile, droughts and floods occur frequently in this region. Analysis on the characteristics and changes of different-class precipitation is of great importance for revealing the laws of climate changes fully in the study area, taking precautions against and fighting natural adversities as well as utilizing water resources reasonably. Based on the daily precipitation data from 1958 to 2012 of 12 meteorological stations in Pi River Valley, daily precipitation were classified into four grades according to precipitation intensity, namely, light(0.1-9.9 mm/d), moderate(10.0-24.9 mm/d), heavy(25.0-49.9 mm/d), hard(≥50 mm/d) rain. The regional amount and frequency of different-class precipitation in the year and seasons were established on the basis of corresponding series of each station by using the arithmetical mean method. We analyzed the seasonal distribution as well as changing trend and abrupt changes of regional different-class precipitation, together with probability distribution of the continuous 3 days maximum precipitation in main rainy season (May to September) in Pi River Valley in this paper. The results showed that the mean proportion of light, moderate, heavy, hard rain precipitation to annual total precipitation were 21.2%, 29.7%, 26.4% and 22.7%, respectively, and those of different-class precipitation frequency were 73.4%, 16.9%, 7.0% and 2.7% in turn. Amount and frequency of light rain in seasons was relatively uniform. Precipitation class was higher, the frequency of it in a year was less and time distribution was more concentrated. The increasing trend of annual rainfall was not obvious, but frequency of annual precipitation exhibited a decreasing tendency at the 0.001 significance level, resulting in the increased annual average precipitation intensity. The amount and frequency of all grades both exhibited increasing tendency in summer and the increasing trend of hard rain were more significant than that of other precipitation classes. There wasn't obvious tendency in winter precipitation frequency except moderate rain, at the same time amount of light, moderate rain in winter exhibited increasing trend. The amount and frequency of all grades decreased consistently in spring and autumn and the decreasing tendency of light rain frequency were very significant exceeding 0.001 level. The abrupt changes in amount and frequency of annual hard rain occurred both in 1968. The jump of decreasing at the 0.01 significance level took place in 1975 in annual light rain frequency. There existed an abrupt increasing change in annual total rainfall, while there existed an abrupt reduction change in annual total precipitation frequency. In comparison to 1958-1977, the probabilities of the continuous 3 days extreme precipitation in main rainy season in Pi River Valley were higher in 1978-2012 and the extreme precipitation in different return periods increased obviously. Facing increasing flood frequency and intensity, we should strengthen the flood control and disaster mitigation efficiently.

Key words: different-class precipitation, rainfall, precipitation frequency, continuous heavy rain, Pi River Valley

中图分类号: 

  • P468
[1] 卢燕宇,吴必文,田 红,等.基于Kriging插值的1961~2005年淮河流域降水时空演变特征分析[J].长江流域资源与环境,2011,20(5):567-573.
[2] XIA J, SHE D X, ZHANG Y Y, et al. Spatio-temporal trend and statistical distribution of extreme precipitation events in Huaihe River Basin during 1960-2009[J]. Journal of Geographical Sciences, 2012, 22 (2): 195-208.
[3] 荣艳淑,王 文,王 鹏,等.淮河流域极端降水特征及不同重现期降水量估计[J].河海大学学报(自然科学版),2012,40(1):1-8.
[4] ZHAI P M, ZHANG X B, WAN H, et al. Trends in total precipitation and frequency of daily precipitation extremes over China[J]. J Climate, 2005, 18(7): 1096-1108.
[5] 王小玲,翟盘茂.1957~2004年中国不同强度级别降水的变化趋势特征[J].热带气象学报,2008,24(5):459-466.
[6] 符娇兰,林 祥,钱维宏.中国夏季分级雨日的时空特征[J].热带气象学报,2008,24(4):367-373.
[7] 杨金虎,江志红,王鹏祥,等.中国年极端降水事件的时空分布特征[J].气候与环境研究,2008,13(1):75-83.
[8] 谢益军,邹用昌,谢 倩,等.我国四季极端雨日数时空变化及其与海表温度异常的关系[J].热带气象学报,2012,28(3):311-320.
[9] 郑腾飞,郭建茂,尹继福,等.基于DFA法的江苏省极端降水时空分布特征研究[J].自然灾害学报,2012,21(4):76-83.
[10] 朱宵峰,钱永甫,宁 亮,等.长江下游地区汛期暴雨气候特征分析[J].热带气象学报,2008,24(2):136-146.
[11] 赵明松,程先富,张建春.六安地区近50年来降水量的变化特征[J].中国农业气象,2008,29(4):397-401.
[12] 李远平,杨太保,马建国.大别山北坡典型区域降水年内分配不均匀性特征研究——以安徽省六安市为例[J].长江流域资源与环境,2012,21(9):1148-1153.
[13] 魏凤英.现代气候统计诊断与预测技术[M].第二版.北京:气象出版社,2007:63-65.
[14] 张 婷,魏凤英.华南地区汛期极端降水的概率分布特征[J].气象学报,2009,67(3):442-451.
[15] 陈子燊,路剑飞,刘曾美.广东极端降水的三参数概率分布模式对比[J].中山大学学报(自然科学版),2012,51(1):102-106.
[16] 蔡 敏,丁裕国,江志红.L-矩估计方法在极端降水研究中的应用[J].气象科学,2007,27(6):597-603.
[17] 魏凤英,张 婷.淮河流域夏季降水的振荡特征及其与气候背景的联系[J].中国科学 D辑:地球科学,2009,39(10):1360-1374.
[18] 刘可晶,王 文,朱 烨,等.淮河流域过去60年干旱趋势特征及其与极端降水的联系[J].水利学报,2012,43(10):1179-1187.
[19] 叶金印,黄 勇,张春莉,等.近50 a淮河流域汛期降水日数和强度的分布与变化特征[J].湖泊科学,2013,25(4):583-592.
[20] 汪 方,田 红.淮河流域1960~2007年极端强降水事件特征[J].气候变化研究进展,2010,6(3):228-229.
[1] 彭俊翔, 伍永年, 胡维平, 邓建才. 长荡湖近61a降水量演化特征[J]. 长江流域资源与环境, 2016, 25(02): 292-299.
[2] 王怀清, 赵冠男, 彭静, 胡菊芳. 近50年鄱阳湖五大流域降水变化特征研究[J]. 长江流域资源与环境, 2009, 18(7): 615-.
[3] 陈 波| 史瑞琴| 陈正洪. 2007年湖北省梅雨期可降水量的GPS观测和分析[J]. 长江流域资源与环境, 2009, 18(6): 535-.
[4] 张斌, 舒成强, 税伟, 刘刚才. 云贵高原北坡石漠化地区近50a降水波动分析——以四川省兴文县为例[J]. 长江流域资源与环境, 2009, 18(12): 1156-.
[5] 陶 涛, 信昆仑, 刘遂庆. 气候变化下21世纪上海长江口地区降水变化趋势分析[J]. 长江流域资源与环境, 2008, 17(2): 223-223.
[6] 章新平, 孙维贞,刘晶淼. 西南水汽通道上昆明站降水中的稳定同位素[J]. 长江流域资源与环境, 2005, 14(5): 665-669.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈亚华,黄少华,刘胜环,王桂萍,丁 锋,邵志成,沈振国. 南京地区农田土壤和蔬菜重金属污染状况研究[J]. 长江流域资源与环境, 2006, 15(3): 356 -360 .
[2] 胡学玉, 孙宏发, 陈德林. 铜绿山矿冶废弃地优势植物重金属的积累与迁移[J]. 长江流域资源与环境, 2008, 17(3): 436 .
[3] 宋述军,周万村. 岷江流域土地利用结构对地表水水质的影响[J]. 长江流域资源与环境, 2008, 17(5): 712 .
[4] 王 初, 陈振楼, 王 京, 周乃晟, 许世远. 上海市崇明岛公路两侧土壤重金属污染研究[J]. 长江流域资源与环境, 2008, 17(1): 105 .
[5] 班军梅,缪启龙,李 雄. 西南地区近50年来气温变化特征研究[J]. 长江流域资源与环境, 2006, 15(3): 346 -351 .
[6] 马鹏红,黄贤金,于术桐,邬 震. 江西省上饶县农户水土保持投资行为机理与实证模型[J]. 长江流域资源与环境, 2004, 13(6): 568 -572 .
[7] 姚海林,杨 洋, 谷志孟. 垃圾块体填埋法及其应用前景[J]. 长江流域资源与环境, 2005, 14(1): 123 -126 .
[8] 雷广海|刘友兆,陆效平. 江苏省13城市土地利用集约度时空变异及驱动因素[J]. 长江流域资源与环境, 2009, 18(1): 7 .
[9] 王学雷,蔡述明,任宪友,陈世俭. 三峡库区湿地生态建设与保护利用[J]. 长江流域资源与环境, 2004, 13(2): 149 -153 .
[10] 尹占娥,许世远. 上海浦东新区土地利用变化及其生态环境效应[J]. 长江流域资源与环境, 2007, 16(4): 430 .