长江流域资源与环境 >> 2006, Vol. 15 >> Issue (3): 356-360.

• 农业发展 • 上一篇    下一篇

南京地区农田土壤和蔬菜重金属污染状况研究

陈亚华1,黄少华2,刘胜环2,王桂萍1,丁 锋1,邵志成1,沈振国1   

  • 收稿日期:2005-09-13 修回日期:2005-10-24 出版日期:2006-05-20
  • 通讯作者: 沈振国

STUDY OF THE HEAVY METAL CONTAMINATION IN SOILS AND VEGETABLES IN NANJING AREA

CHEN Ya-hua1,HUANG Shao-hua2,LIU Sheng-huan2,WANG Gui-ping1,DING Feng1,SHAO Zhi-cheng1,SHEN Zhen-guo1   

  • Received:2005-09-13 Revised:2005-10-24 Online:2006-05-20
  • Contact: SHEN Zhen-guo

摘要: 采集了南京市5县4郊5个环境单元(矿冶区、交通干线、工厂周边、污灌地、农产品基地)共100个样点的农田土壤及部分蔬菜样品,测定了重金属(Pb、Cu、Zn、Cd)的质量分数。结果表明,土壤Pb、Cu、Zn、Cd 质量分数的变化范围分别为26.1~4 138.8、16.5 ~3 375.1、46.0~3 587.6、0.09~17.61 mg/kg。不同功能区土壤重金属含量存在明显差异,以矿区周边农田污染最为严重,其次为污灌地和公路沿线农田, 部分农产品基地存在轻度Cd污染,工厂周边农田土壤污染相对较小。19个样点的青菜地上部重金属Pb、Cu、Zn、Cd质量分数的变化范围分别为0.11~7.11、5.04~76.42、36.8~364.3、0.04~2.96 mg/kg,同样以矿区周边污染农田的青菜样本重金属含量最高。青菜重金属含量与土壤重金属生物有效性含量和总量之间呈极显著相关。不合理的矿业开采和冶炼是导致南京地区农田土壤和蔬菜重金属污染的重要原因。

关键词: 重金属污染, 土壤, 蔬菜, 南京地区

Abstract: Heavy metal contamination in soils and vegetables in five environmental units, i.e. mining and smelting area, arterial traffic,factory,sewage irrigation plot and farm produce base, in 5 counties and 4 suburbs of Nanjing City were investigated. The results shown that the scope of total soil Pb, Cu, Zn and Cd concentrations of 100 soil samples was 26.1~4 138.8, 16.5~3 375.1, 46.0~3 587.6 and 0.09~17.61 mg/kg, respectively. There were significant differences among different environmental units. Soils sampled from mining and smelting areas were the most seriously contaminated with heavy metals, followed by soils from sewage irrigation plots and highway. Soils from farm produce bases were slightly polluted by Cd. Among 5 environmental units, soils from peripheral farmlands of factories had the least contamination by heavy metals. The scope of Pb, Cu, Zn and Cd concentrations in the shoot of 19 Chinese cabbage(Brassica chinensis L.)samples was 0.11~7.11, 5.04~76.42, 36.8~364.3 and 0.04~2.96 mg/kg, respectively. The samples from mining and smelting areas had the highest shoot heavy metal concentration, and also the highest in the soils of these areas. The heavy metal concentration in the shoot of cabbage had a significantly positive correlation with the total and bio-available concentrations of soil heavy metals. Non-rational mining and smelting activities have been the major cause of heavy metal contamination in soils and vegetables in Nanjing Area.

Key words: heavy metal contamination, soil, vegetable, Nanjing Area

[1] 张文婷. 江西省不同地貌单元耕地土壤有机碳空间变异的尺度效应[J]. 长江流域资源与环境, 2018, 27(11): 2619-2628.
[2] 夏芳, 王秋爽, 蔡立梅, 杨超, 冯志州, 唐翠华, 卫瀛海, 许振成. 有色冶金区土壤-蔬菜系统重金属污染特征及健康风险分析[J]. 长江流域资源与环境, 2017, 26(06): 865-873.
[3] 李金前, 王吉, 刘亚军, 邹锋, 马燕天, 吴兰. 水位高程变化对湿地土壤微生物代谢功能的影响研究——以蚌湖为例[J]. 长江流域资源与环境, 2017, 26(05): 730-737.
[4] 布乃顺, 胡悦, 杨骁, 张雪, 王俭, 李博, 方长明, 宋有涛. 互花米草入侵对长江河口湿地土壤理化性质的影响[J]. 长江流域资源与环境, 2017, 26(01): 100-109.
[5] 靳士科, 王娟娟, 朱莎, 张琪, 黎翔, 郑文静, 由文辉. 上海城区六种林地凋落物中土壤动物群落结构[J]. 长江流域资源与环境, 2016, 25(Z1): 1-8.
[6] 张文桐, 庞奖励, 周亚利, 黄春长, 查小春, 崔天宇. 湖北郧西县庹家湾剖面粒度组成特征及其环境意义[J]. 长江流域资源与环境, 2016, 25(12): 1910-1916.
[7] 李艳, 高艳娜, 戚志伟, 姜楠, 仲启铖, 姜姗, 王开运, 张超. 滨海芦苇湿地土壤微生物数量对长期模拟增温的响应[J]. 长江流域资源与环境, 2016, 25(11): 1738-1747.
[8] 董立宽, 方斌, 施龙博, 马鑫雨, 郑俊. 茶园土壤速效磷乡镇尺度下空间异质性对比分析——以江浙地区优质名茶种植区为例[J]. 长江流域资源与环境, 2016, 25(10): 1576-1584.
[9] 谷守宽, 秦鱼生, 孙倩倩, 王正银, 涂仕华. 定位施肥紫色菜园土壤钾素效应研究[J]. 长江流域资源与环境, 2016, 25(10): 1611-1617.
[10] 李云良, 许秀丽, 赵贵章, 姚静, 张奇. 鄱阳湖典型洲滩湿地土壤质地与水分特征参数研究[J]. 长江流域资源与环境, 2016, 25(08): 1200-1208.
[11] 吕严凤, 蒋容, 鲜骏仁, 杨远祥, 杨占彪. 川中丘陵区柏木边坡防护林对相邻农田大型土壤动物群落的影响[J]. 长江流域资源与环境, 2016, 25(08): 1299-1307.
[12] 于法展, 张忠启, 陈龙乾, 沈正平. 庐山不同森林植被类型土壤特性及其健康评价[J]. 长江流域资源与环境, 2016, 25(07): 1062-1069.
[13] 闫思宇, 王景燕, 龚伟, 罗建跃, 苏黎明, 舒正悦, 赵昌平, 蔡煜. 川南山地林分变化对土壤物理性质和抗蚀性的影响[J]. 长江流域资源与环境, 2016, 25(07): 1112-1120.
[14] 党丽娜, 梅杨, 廖祥森, 刘颖颖. 城市不同交通圈(带)土壤重金属多元统计分析及空间分布研究——以武汉市为例[J]. 长江流域资源与环境, 2016, 25(06): 925-931.
[15] 刘睿, 周李磊, 彭瑶, 嵇涛, 李军, 张虹, 戴技才. 三峡库区重庆段土壤保持服务时空分布格局研究[J]. 长江流域资源与环境, 2016, 25(06): 932-942.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 聂钠, 于坤香. 我国世界自然遗产地旅游业环境经济核算思路[J]. 长江流域资源与环境, 2009, 18(2): 121 .
[2] 李燕玲, 刘爱民. 长江流域冬季农业主要作物的耕地竞争机制及案例研究[J]. 长江流域资源与环境, 2009, 18(2): 146 .
[3] 宋玉芝,秦伯强, 高光. 附着生物对富营养化水体氮磷的去除效果[J]. 长江流域资源与环境, 2009, 18(2): 180 .
[4] 许峰, 祁士华, 高媛, 邢新丽. 绵阳市代表性点位土壤多环芳烃剖面分布特征[J]. 长江流域资源与环境, 2009, 18(2): 192 .
[5] 曾 群, 蔡述明. 武汉市水资源可持续利用评价[J]. 长江流域资源与环境, 2005, 14(4): 429 -434 .
[6] 张运林,陈伟民,杨顶田,黄文钰,江 晶, . 天目湖2001~2002年环境调查及富营养化评价[J]. 长江流域资源与环境, 2005, 14(1): 99 -103 .
[7] 张宝雷,周万村,马泽忠,. 三峡地区主要地类的自动提取方法研究[J]. 长江流域资源与环境, 2005, 14(4): 445 -449 .
[8] 陈 勇,陈国阶,杨定国. 岷江上游聚落分布规律及其生态特征——以四川理县为例[J]. 长江流域资源与环境, 2004, 13(1): 72 -77 .
[9] 解晓南,许朋柱,秦伯强. 太湖流域苏锡常地区地面沉降若干问题探析[J]. 长江流域资源与环境, 2005, 14(1): 125 -131 .
[10] 刘 健,陈 星,彭恩志,周学东. 气候变化对江苏省城市系统用电量变化趋势的影响[J]. 长江流域资源与环境, 2005, 14(5): 546 -550 .