长江流域资源与环境 >> 2015, Vol. 24 >> Issue (10): 1793-1798.doi: 10.11870/cjlyzyyhj201510023

• 生态环境 • 上一篇    下一篇

长江中下游地区旱涝急转的阈值诊断及危险性评估

吉中会1,2, 单海燕2   

  1. 1. 南京信息工程大学气象灾害预报预警与评估协同创新中心, 江苏 南京 210044;
    2. 南京信息工程大学经济管理学院, 江苏 南京 210044
  • 收稿日期:2014-12-25 修回日期:2015-04-09 出版日期:2015-10-20
  • 作者简介:吉中会(1984~),女,讲师,博士,主要研究方向为气象灾害风险评估与管理.E-mail:zhonghuiji@mail.bnu.edu.cn
  • 基金资助:
    南京信息工程大学科研启动项目(sk20140081);国家自然科学基金面上项目(71373131)

THRESHOLD DIAGNOSIS AND HAZARD DANGEROUSNESS EVALUATION FOR THE DISASTER OF DROUGHT-FLOOD ABRUPT ALTERNATION IN THE MIDDLE AND LOWER REACHES OF THE YANGTZE RIVER

JI Zhong-hui1,2, SHAN Hai-yan2   

  1. 1. Collaborative Innovation Center on Climate and Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing, China;
    2. School of Economics and Management, Nanjing University of Information Science & Technology, Nanjing, China
  • Received:2014-12-25 Revised:2015-04-09 Online:2015-10-20

摘要: 选择与长江中下游地区夏季旱涝异常有关的15项大气环流指数作为自变量,以旱涝急转指数为因变量,采用非线性非参数的分类与回归树方法(CART)预测旱涝急转成灾的危险性等级。CART不仅能够提取出主要致灾因子,同时可以诊断不同影响阈值条件下,旱涝异常的类型及危险性等级。研究结果显示,夏季和春季北极涛动指数、春季亚洲径向环流指数,以及春季亚洲区极涡面积指数4项指标是旱涝突变成灾的主要影响因子,对旱涝急转成灾的危险程度具有很好的表征作用。当夏季北极涛动指数大于1.11时,更容易发生涝转旱事件(危险性等级为1级),而当夏季北极涛动指数小于或等于1.11,同时春季北极涛动指数大于或等于-1.11时,更容易发生旱转涝事件(危险性等级为6级),其他危险性等级的条件也可从模型中直接判读出来。采用2011~2013年的实测数据和模型预测结果进行对比,两者非常接近,验证了模型的可靠性。采用的CART方法为长江中下游地区旱涝急转致灾的等级预测提供了一种新的思路。

关键词: 旱涝急转, 危险性评估, 阈值诊断, 分类与回归树, 长江中下游地区

Abstract: Based on the related impact factors of the precipitation anomaly in summer in the Middle and Lower Reaches of the Yangtze River, 15 atmospheric circulation indicators as the independent variables and the hazard dangerousness level of drought-flood abrupt alternation index as the dependent variable were selected to construct the nonlinear and non-parametric classification and regression tree (CART) model for the hazard evaluation. The time series of data is from 1954 to 2010. Results showed that Arctic Oscillation Indices in summer (AOI_SU) and spring (AOI_SP), Asia Meridional Circulation Index in spring (AMCI_SP), and Asia Polar Vortex Area Index in spring (APVAI_SP) were the four main impact factors, which were proved to be suitable for the hazard evaluation of disaster about drought-flood abrupt alternation through the CART model. The type of the disaster (flood to drought or drought to flood) and the predicted dangerousness level under different diagnosis conditions can also be obtained from the model. The diagnosis thresholds and dangerousness level as follows: 1) When AOI_SU more than 1.11, the disaster of the quick turn from flood to drought is more apt to happen (dangerousness level is 1). 2) When the AOI_SU is less than 1.11 and the AOI_SP is more than -1.11, the disaster of the abrupt alternation from drought to flood will occur (dangerousness level is 6). 3) When the AOI_SU is less than 1.11, the AOI_SP less than -1.11, and the AMCI_SP more than 61, the same situation will happen as the one before this, and the predicted level is 5.5. 4) When the AOI_SU is less than 1.11, the AOI_SP less than -1.11, and the AMCI_SP less than 57, the abrupt alternation from flood to drought will happen, and the predicted level is 1.29. 5) When the AOI_SU less than 1.11, the AOI_SP less than -1.11, the AMCI_SP between 57 and 61, and the APVAI_SP less than 172, the abrupt alternation from flood to drought will happen, and the predicted level is 2.1. The corresponding indicators from 2011 to 2013 were selected to verify the final model through the comparison between the predicted values and actual levels, and the model was proved to be reliable for the close values. The CART proposed in this study provides a new method that can predict the hazard dangerousness level from the disaster of drought-flood abrupt alternation in the middle and lower reaches of the Yangtze River.

Key words: drought-flood abrupt alternation, hazard dangerousness evaluation, threshold diagnosis, CART, the Middle and Lower Reaches of the Yangtze River

中图分类号: 

  • X4
[1] 牛建利,何紫云,张天宇,等.旱涝急转对生产、生活与生态的影响及应对措施效果分析——以安徽省巢湖市槐林镇为例[J].长江流域资源与环境,2013,22(Z1):108-115.
[2] 邓 艳,陈小荣."旱涝急转"对水稻生长发育的影响及其有关问题的思考[J].生物灾害科学,2013,36(2):217-222.
[3] 唐慧芳,韩建刚.1994年夏季我国灾害性天气概述[J].中国减灾,1994,4 (4):6-9.
[4] 张 屏,汪付华,吴忠连,等.淮北市旱涝急转型气候规律分析[J].水利水电快报,2008,29:139-141.
[5] 沈柏竹,张世轩,杨涵洧,等.2011年春夏季长江中下游地区旱涝急转特征分析[J].物理学报,2012,62(10):1-11.
[6] 程 智,丁小俊,徐 敏,等.长江中下游地区典型旱涝急转气候特征研究[J].长江流域资源与环境,2012,21(Z2):115-120.
[7] 吴志伟,李建平,何金海,等.大尺度大气环流异常与长江中下游夏季长周期旱涝急转[J].科学通报,2006,51 (14):1717-1724.
[8] 唐 明,邵东国,姚成林.沿淮淮北地区旱涝急转的成因及应对措施[J].中国水利水电科学研究院学报,2007,5(1):26-32.
[9] 封国林,杨涵洧,张世轩,等.2011年春末夏初长江中下游地区旱涝急转成因初探[J].大气科学,2012,36(5):1009-1026.
[10] 刘凤丽.城市旱涝急转灾害机理及防涝减灾体系研究[J].水利科技与经济,2012,18(10):88-93.
[11] 李 迅,袁东敏,尹志聪,等.2011 年长江中下游旱涝急转成因初步分析[J].气候与环境研究,2014,19(1):41-50.
[12] SU B D.,GEMMER M,JIANG T.Spatial and temporal variation of extreme precipitation over the yangtze river basin[J].Quaternary International,2008,186:22-31.
[13] SAMIR C M,REINE P L,SONIA R G,et al.Assessing the impact of El niño modoki on seasonal precipitation in Colombia[J].Global and Planetary Change,2015,124:41-61.
[14] TACHIIRI K,SHINODA M.Quantitative risk assessment for future meteorological disasters reduced livestock mortality in Mongolia[J].Climatic Change,2011,113(3-4):867-882.
[15] JI Z H,LI N,XIE W,et al.Comprehensive assessment of flood risk with classification and regression tree method[J].Stochastic Environmental Research and Risk Assessment,2013,27:1815-1828.
[16] MCKEE T B,DOESKEN N J,Kleist J.The Relationship of Drought Frequency and Duration to Time Scales[R].California:Eighth Conference on Applied Climatology,1993:179-184.
[17] TACHIIRI K,SHINODA M,KLINKENBERG B,et al.Assessing Mongolian snow disaster risk using livestock and satellite data[J].J Arid Environ,2008,72:2251-2263
[18] 龚道溢,朱锦红,王绍武.长江流域夏季降水与前期北极涛动的显著相关[J].科学通报,2002,47(7):546-549.
[19] 郭 玲,何金海,祝从文.影响长江中下游夏季降水的前期潜在预报因子评估[J].大气科学,2012,36(2):337-349.
[1] 刘俸霞, 王艳君, 赵晶, 陈雪, 姜彤. 全球升温1.5℃与2.0℃情景下长江中下游地区极端降水的变化特征[J]. 长江流域资源与环境, 2017, 26(05): 778-788.
[2] 闪丽洁, 张利平, 陈心池, 杨卫. 长江中下游流域旱涝急转时空演变特征分析[J]. 长江流域资源与环境, 2015, 24(12): 2100-2107.
[3] 秦鹏程, 刘敏. 气象干旱诊断评估方法及其在长江中下游地区的应用[J]. 长江流域资源与环境, 2015, 24(11): 1969-1976.
[4] 王蒙, 殷淑燕. 近52 a长江中下游地区极端降水的时空变化特征[J]. 长江流域资源与环境, 2015, 24(07): 1221-1229.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程 江,何 青,王元叶,刘 红,夏小明. 长江河口细颗粒泥沙絮凝体粒径的谱分析[J]. 长江流域资源与环境, 2005, 14(4): 460 -464 .
[2] 彭 建,景 娟,吴健生,蒋依依,张 源. 乡村产业结构评价——以云南省永胜县为例[J]. 长江流域资源与环境, 2005, 14(4): 413 .
[3] 蔡述明. 研究长江中游地区水资源开发利用的新成果[J]. 长江流域资源与环境, 2004, 13(1): 100 .
[4] 段学花 王兆印 余国安. 以底栖动物为指示物种对长江流域水生态进行评价[J]. 长江流域资源与环境, 2009, 18(3): 241 -247 .
[5] 王宏巍. 俄罗斯土壤污染防治立法研究及其对构建我国《土壤污染防治法》的启示[J]. 长江流域资源与环境, 2009, 18(4): 326 .
[6] 刘蓓蓓, 李凤英, 俞钦钦, 于洋, 毕军. 长江三角洲城市间环境公平性研究[J]. 长江流域资源与环境, 2009, 18(12): 1093 .
[7] 许妍, 高俊峰, 黄佳聪. 太湖湿地生态系统服务功能价值评估[J]. 长江流域资源与环境, 2010, 19(06): 646 .
[8] 吴建楠, 姚士谋, 曹有挥, 王成新. 长江三角洲城市群城乡统筹发展的空间差别化研究[J]. 长江流域资源与环境, 2010, 19(z1): 21 .
[9] 师长兴. 长江上游输沙模数分布图的制作及其空间分异特征初步分析[J]. 长江流域资源与环境, 2010, 19(11): 1322 .
[10] 伍学进, 曾菊新. 试论宜居性城市绿地的规划与建设[J]. 长江流域资源与环境, 2011, 20(1): 28 .