长江流域资源与环境 >> 2016, Vol. 25 >> Issue (07): 1135-1141.doi: 10.11870/cjlyzyyhj201607016

• 生态环境 • 上一篇    下一篇

基于GMS的山区三维地质模型及应用研究

龚继文1,2, 李崇明1,2, 程艳茹2, 张韵2, 赵丽2   

  1. 1. 重庆大学城市建设与环境工程学院, 重庆 400045;
    2. 重庆市环境科学研究院, 重庆 401147
  • 收稿日期:2015-11-13 修回日期:2016-03-02 出版日期:2016-07-20
  • 通讯作者: 李崇明 E-mail:Chongming-Li@163.com
  • 作者简介:龚继文(1990~),男,硕士研究生,主要从事地下水数值模拟研究.E-mail:gjw231989@163.com
  • 基金资助:
    环保重大专项全国地下水基础环境状况调查评估(2110302)

THREE-DIMENSIONAL GEOLOGICAL MODEL AND APPLICATION RESEARCH ON THE MOUNTAIN AREA BASED ON GMS

GONG Ji-wen1,2, LI Chong-ming1,2, CHENG Yan-ru2, ZHANG Yun2, ZHAO Li2   

  1. 1. Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, China;
    2. Chongqing Academe of Environmental Science, Chongqing 401147, China
  • Received:2015-11-13 Revised:2016-03-02 Online:2016-07-20
  • Supported by:
    Environmental Protection Major Project for National Investigation andEvaluation of the Groundwater Basic Environmental Status (2110302)

摘要: 本文基于GMS平台,在综合分析重庆某山区地质平面图、地质剖面图、钻孔资料等数据基础上构建了三维可视化地质模型。模拟结果表明:研究区砂泥岩倾斜互层的沉积顺序和不同岩性的空间分布情况与该区已有资料相一致;模型剖面与实际地质剖面面积之比约为1.15,主要岩性面积百分比相对误差绝对值均在15%以内。运用该模型概化为三维水文地质模型,模拟得出研究区地下水流场空间分布,体现了三维地质模型在地下水数值模拟方面的运用价值。该模型的构建为山区区域地质结构研究提供了参考,也为今后该地区开展地下水相关工作打下了基础。

关键词: GMS, 三维地质模型, 地下水, 数值模拟

Abstract: This paper aims to conduct a 3D geological model of a mountainous area in Chongqing by means of a software platform, namely, Groundwater Modelling System (GMS, after comprehensive analyzing data on geological maps, geological cross-section maps and borehole data. The simulation results showed that:sandstone-mudstone interbed of the deposition sequences and the distribution of different lithology were consistent with the existing area data; the ratio of the model profile area to the actual geological sections area was about 1.15, the absolute relative error of the main lithology area percentage were less than 15%. We built a 3D hydrogeology model based on the geological model for groundwater numerical simulation, which reflected the value of 3D geological model in the field of groundwater numerical simulation. This 3D geological model not only provides reference for geological structure of mountain region, but also lay a foundation for the future work related to groundwater research.

Key words: GMS, 3D geological model, groundwater, numerical simulation

中图分类号: 

  • P641
[1] HOULDING S W. 3D Geo-science modeling:Computer Techniques for Geological Characterization[M]. London:Springer-Verlag, 1993.1-2
[2] HØYER A S, JØRGENSEN F, FOGED N, et al. Three-dimensional geological modelling of AEM resistivity data-A comparison of three methods[J]. Journal of Applied Geophysics, 2015, 115:65-78.
[3] RAIBER M, WEBB J A, CENDÓN D I, et al. Environmental isotopes meet 3D geological modelling:Conceptualising recharge and structurally-controlled aquifer connectivity in the basalt plains of south-western Victoria, Australia[J].Journal of Hydrology, 2015, 527:262-280.
[4] 钟登华,刘杰,李明超,等.基于三维地质模型的大型地下洞室群布置优化研究[J].水利学报, 2007, 38(1):60-66.[ZHONG D H, LIU J, LI M C, et al. Layout optimization of large scale underground structure group based on 3-D geological model[J]. SHUILI XUEBAO, 2007, 38(1):60-66.]
[5] 薛林福,李文庆,张伟,等.分块区域三维地质建模方法[J].吉林大学学报(地球科学版), 2014, 44(6):2051-2058.[XUE L F, LI W Q, ZHANG W, et al. A Method of Block-Divided 3D Geologic Modeling in Regional Scale[J].Journal of Jilin Unversity(Earth Science Edition), 2014, 44(6):2051-2058.]
[6] LE CARLIER DE VESLUD C, CUNEY M, LORILLEUX G, et al. 3D modeling of uranium-bearing solution-collapse breccias in Proterozoic sandstones (Athabasca Basin, Canada)-Metallogenic interpretations[J]. Computers &Geosciences, 2009, 35:92-107.
[7] JONES R R, MCCAFFREY K J W, CLEGG P, et al. Integration of regional to outcrop digital data:3D visualisation of multi-scale geological models[J]. Computers & Geosciences, 2009, 35:4-18.
[8] 吴胜和,李宇鹏.储层地质建模的现状与展望[J].海相油气地质. 2007, 12(3):53-60.[WU S H, LI Y P. Reservoir modeling:Current Situation and Development Prospect[J]. Marine Origin Petroleum Geology, 2007,12(3):53-60.]
[9] CONDE F C, MARTÍNEZ S G, RAMOS J L, et al. Building a 3D geomodel for water resources management:case study in the Regional Park of the lower courses of Manzanares and Jarama Rivers[J]. Environ Earth Sci, 2014, 71:61-66.
[10] CHESNAUX R, LAMBERT M, WALTER J, et al. Building a geodatabase for mapping hydrogeological features and 3D modeling of groundwater systems:Application to the Saguenay-Lac-St.-Jean region, Canada[J]. Computers&Geosciences, 2011, 37:1870-1882.
[11] TONINI A, GUASTALDI E. MASSA G, et al. 3D geo-mapping based on surface data for preliminary study of underground works:A case study in Val Topina (Central Italy)[J]. Engineering Geology, 2008, 99:61-69.
[12] 杨志华,兰恒星,张永双.基于GIS-GOCAD耦合技术的三维地质建模[J].地理与地理信息科学, 2012, 28(5):16-20.[YANG Z H, LAN H X, ZHANG Y S. 3-Dimensional Geological Modeling Based On Coupled GIS-GOCAD[J]. Geography and Geo-Information Science, 2012, 28(5):16-20.]
[13] 陈正华,周斌,邓智.基于GMS的武山矿区水文地质结构可视化模型[J].安全与环境工程, 2012, 19(4):125-128.[CHEN Z H, ZHOU B, DENG Z. Hydrogeological Structure visualization Model of Wushan Mine Based on GMS[J]. Safety and Environmental Engineering, 2012, 19(4):125-128.]
[14] 梁煦枫,王哲,曾永刚.基于GMS的水文地质结构可视化研究——以天山北麓为例[J].地下水, 2006, 28(6):79-82.[LIANG X F, WANG Z, ZENG Y G. Visual Research of Hydrogeological Structure Based on GMS Sof tware-with an example of the northern foot of Tianshan Mountain[J]. Groundwater, 2006, 28(6):79-82.]
[15] 朱良峰,吴信才,刘修国,等.城市三维地层建模中虚拟孔的引入与实现[J].地理与地理信息科学, 2004, 20(6):26-30.[ZHU L F, WU X C, LIU X G, et al. Introduction and Implementation of Virtual Borehole in the Construction of Urban 3D Strata Model[J]. Geography and Geo-Information Science, 2004, 20(6):26-30.]
[16] 王润怀,李永树,刘永和,等.三维地质建模中虚拟钻孔的引入及其确定[J].地质与勘探, 2007, 43(3):102-107.[WANG R H, LI Y S, LIU Y H, et al. Import and determ ination methods for virtual borehole in Geo-3D modeling[J]. Geology and Prospecting, 2007, 43(3):102-107.]
[17] LEMON A M, JONES N L, Building solid models from boreholes and user-defined cross-sections[J]. Computers & Geosciences, 2003, 29:547-555.
[18] 朱哲.矿区再造地下水环境渗流规律及防水工程可靠性分析[D].湖南:中南大学,2013:44-50.[ZHU Z, Analysis of Seepage Law and Reliability of Waterproof Engineering in Regenerating Mine Groundwater Environment[D]. Hunan:Central South University, 2013:44-50.]
[19] 王礼春.天津市深层地下水资源及其地面沉降数值模拟研究[D].北京:中国地质大学,2010:26-53.[WANG L C, The study on deep Groundwater resources and subsidence caused by withdrawal with method of numerical simulation in Tianjin District[D]. Beijing:China University of Geosciences, 2010:26-53.]
[20] BORGIA A, CATTANEO L, MARCONI D, et al. Using a MODFLOW grid, generated with GMS, to solve a transport problem with TOUGH2 in complex geological environments:The intertidal deposits of the Venetian Lagoon[J]. Computers & Geosciences, 2011, 37:783-790.
[21] TOUCH S, LIKITLERSUANG S, PIPATPONGSA T. 3D geological modelling and geotechnical characteristics of Phnom Penh subsoils in Cambodia[J]. Engineering Geology, 2014, 178:58-69.
[1] 唐子珺, 陈龙, 覃军, 郑翔. 武汉市一次污染过程的局地流场和边界层结构的数值模拟[J]. 长江流域资源与环境, 2018, 27(11): 2540-2547.
[2] 任娟, 王建力, 杨平恒, 詹兆君, . 亚高山旅游景区岩溶地下水水化学动态变化及其影响因素[J]. 长江流域资源与环境, 2018, 27(11): 2548-2557.
[3] 张岩, 付昌昌, 毛磊, 龚绪龙, 李向全. 江苏盐城地区地下水水化学特征及形成机理[J]. 长江流域资源与环境, 2017, 26(04): 598-605.
[4] 李云良, 张小琳, 赵贵章, 姚静, 张奇. 鄱阳湖区地下水位动态及其与湖水侧向水力联系分析[J]. 长江流域资源与环境, 2016, 25(12): 1894-1902.
[5] 张建伟, 胡克, 岳玮, 刘宝林, 王建, 高擎. 上海城区地面沉降及其对地下水采灌量的响应[J]. 长江流域资源与环境, 2016, 25(04): 567-572.
[6] 卿晓霞, 王兆兴, 周健, 黄巍. 山地城市小型季节性河流雨洪淹没的数值模拟[J]. 长江流域资源与环境, 2016, 25(04): 679-684.
[7] 荆平 贾海峰. 流域地下水质评价的GIS与模型集成分析[J]. 长江流域资源与环境, 2009, 18(3): 248-253.
[8] 郑宗生, 周云轩, 刘志国, 田 波. 基于水动力模型及遥感水边线方法的潮滩高程反演[J]. 长江流域资源与环境, 2008, 17(5): 756-756.
[9] 向 波,纪昌明,蓝霄峰,罗庆松. 地下水非稳定流问题的有限分析五点格式[J]. 长江流域资源与环境, 2007, 16(6): 721-721.
[10] 孙爱荣,周爱国,梁合诚,鄂 建. 九江市地下水易污性评价——基于DPASTIC指标的模糊综合评价模型[J]. 长江流域资源与环境, 2007, 16(4): 499-499.
[11] 李俊云,李林立,谢世友,李廷勇,李元庆. 人类活动对川东平行岭谷区岩溶地下水化学性质季节变化的影响[J]. 长江流域资源与环境, 2007, 16(4): 514-514.
[12] 武周虎,张娜. 河滩人工湿地对河流洪水位影响的数值模拟[J]. 长江流域资源与环境, 2007, 16(1): 7-10.
[13] 卢士强,林卫青,徐祖信,廖振良. 苏州河环境整治二期工程水质影响数值模拟[J]. 长江流域资源与环境, 2006, 15(2): 228-231.
[14] 解晓南,许朋柱,秦伯强. 太湖流域苏锡常地区地面沉降若干问题探析[J]. 长江流域资源与环境, 2005, 14(1): 125-131.
[15] 刘英华,张世熔, 张素兰, 魏 甦, 肖鹏飞. 成都平原地下水硝酸盐含量空间变异研究[J]. 长江流域资源与环境, 2005, 14(1): 114-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈 勇,陈国阶,杨定国. 岷江上游聚落分布规律及其生态特征——以四川理县为例[J]. 长江流域资源与环境, 2004, 13(1): 72 -77 .
[2] 陈正洪,万素琴,毛以伟. 三峡库区复杂地形下的降雨时空分布特点分析[J]. 长江流域资源与环境, 2005, 14(5): 623 -627 .
[3] 张磊,董立新,吴炳方,周万村. 三峡水库建设前后库区10年土地覆盖变化[J]. 长江流域资源与环境, 2007, 16(1): 107 -112 .
[4] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[5] 禹 娜,陈立侨,赵泉鸿. 太湖介形类动物丰度与生物量[J]. 长江流域资源与环境, 2008, 17(4): 546 .
[6] 孔令强. 水电工程农村移民入股安置模式初探[J]. 长江流域资源与环境, 2008, 17(2): 185 .
[7] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[8] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[9] 于苏俊,张 继,夏永秋. 基于遗传算法的可持续土地利用动态规划[J]. 长江流域资源与环境, 2006, 15(2): 180 -184 .
[10] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .