长江流域资源与环境 >> 2017, Vol. 26 >> Issue (02): 264-272.doi: 10.11870/cjlyzyyhj201702012

• 生态环境 • 上一篇    下一篇

2015年长三角地区城市PM2.5时空格局及影响因素分析

毛婉柳1, 徐建华1, 卢德彬1,2, 杨东阳1, 赵佳楠1   

  1. 1. 华东师范大学 地理科学学院, 上海 200241;
    2. 铜仁学院 旅游与地理系, 贵州 铜仁 554300
  • 收稿日期:2016-07-11 修回日期:2016-10-31 出版日期:2017-02-20
  • 通讯作者: 徐建华,E-mail:jhxu@geo.ecnu.edu.cn E-mail:jhxu@geo.ecnu.edu.cn
  • 作者简介:毛婉柳(1992~),女,硕士研究生,主要研究方向为计量地理与GIS应用.E-mail:mwanliu@163.com
  • 基金资助:
    国家自然科学基金(41130525)

AN ANALYSIS OF THE SPATIAL-TEMPORAL PATTERN AND INFLUENCING FCTORS OF PM2.5 IN THE YANGTZE RIVER DELTA IN 2015

MAO Wan-liu1, XU Jian-hua1, LU De-bin1,2, YANG Dong-yang1, ZHAO Jia-nan1   

  1. 1. School of Geographic Sciences, East China Normal University, Shanghai 200241, China;
    2. Department of Tourism and Geography, Tongren University, Tongren 554300, China
  • Received:2016-07-11 Revised:2016-10-31 Online:2017-02-20
  • Supported by:
    National Natural Science Foundation of China, (No.31470519)

摘要: PM2.5浓度值增加对大气能见度、人体健康和气候变化有着重要影响。采用2015年长三角地区监测数据,运用探索性空间数据分析法和相关系数法,分析长三角地区城市PM2.5污染的时空格局和影响因素,结果表明:(1)2015年长三角地区城市PM2.5年均浓度值为54.54 μg/m3,季节变化总体呈现春冬高夏秋低的季节性周期变化规律,1月和12月为一年中PM2.5污染最严重的月份,污染范围最广,5~9月是PM2.5浓度值优良时段,日均值春季和冬季的波动周期较短而剧烈,夏季和秋季波动周期相对较长而平缓。(2)2015年长三角地区城市PM2.5年均浓度值整体上从江苏到浙江呈减少趋势,具有北高南低,局部突出的特征。(3)长三角地区城市PM2.5浓度空间上存在集聚现象,低值集聚主要分布在浙江沿海地区,高值集聚主要分布在苏南地区。(4)燃烧排放的烟尘和前体物的二次转化对长三角地区PM2.5浓度有显著影响。风速和降水量是影响PM2.5浓度的两个重要气象因素。

关键词: PM2.5, 时空格局, 气象因素, 长三角地区

Abstract: The increase of PM2.5 concentration has a vital influence on atmospheric visibility, human health and climate change. This paper adopts the monitoring data of the Yangtze River Delta in 2015, employs the analytical method of exploratory spatial data and relative coefficient method, and analyzes the spatial-temporal pattern and influencing factors of PM2.5 in cities of the Yangtze River Delta. The results showed that:1) The average annual concentration of PM2.5 in Yangtze River Delta region is 54.54 μg/m3. The level is high in spring & winter and low in summer & autumn in general. January and December are the months of most polluted, with widest range of pollution. The concentration is low in months during May to September. The average daily value of wave period in spring and winter is shorter and intense, while in summer and autumn is longer and gentle. 2) In 2015, the average annual concentration of PM2.5 in the Yangtze River Delta region is decreasing from Jiangsu to Zhejiang, which has the characteristics of high in north and low in south, local projecting. 3) In the Yangtze River Delta region, low concentration of PM2.5 in the urban agglomeration is mainly distributed in the coastal area of Zhejiang Province, and the high value agglomeration is mainly distributed in the South of Jiangsu area. 4) The soot emitted by burning and the quadratic transformations of precursor has a significant impact on the concentration of PM2.5 in Yangtze River Delta region. Wind speed and precipitation are the two important meteorological factors that affect the concentration of PM2.5.

Key words: PM2.5, spatial and temporal pattern, meteorological factor, Yangtze River Delta region

中图分类号: 

  • X513
[1] 李莉, 陈长虹, 黄成, 等. 长江三角洲地区大气O3和PM10的区域污染特征模拟[J]. 环境科学, 2008, 29(1):237-245.[LI L, CHEN C H, HUANG C, et al. Regional air pollution characteristics simulation of O3 and PM10 over Yangtze River Delta Region[J]. Environmental Science, 2008, 29(1):237-245.]
[2] GENG G N, ZHANG Q, MARTIN R V, et al. Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model[J]. Remote Sensing of Environment, 2015, 166:262-270.
[3] 邓君俊. 长三角地区霾天气形成机理和预报方法研究[D]. 南京:南京大学博士学位论文, 2011.[DENG J J. Study on the formation mechanism and forecasting methodology on haze weather in Yangtze River Delta[D]. Nanjing:Doctor Dissertation of Nanjing University, 2011.]
[4] YU S C, DENNIS R L, BHAVE P V, et al. Primary and secondary organic aerosols over the United States:estimates on the basis of observed organic carbon (OC) and elemental carbon (EC), and air quality modeled primary OC/EC ratios[J]. Atmospheric Environment, 2004, 38(31):5257-5268.
[5] KAN H D, CHEN R J, TONG S L. Ambient air pollution, climate change, and population health in China[J]. Environment International, 2012, 42:10-19.
[6] GUAN D B, SU X, ZHANG Q, et al. The socioeconomic drivers of China's primary PM2.5 emissions[J]. Environmental Research Letters, 2014, 9(2):024010.
[7] 潘月鹏, 贾琳, 田世丽, 等. 大气霾污染对农业生产的可能影响[J]. 农业环境科学学报, 2014, 33(11):2279-2280.[PAN Y P, JIA L, TIAN S L, et al. Potential effects of haze pollution on agriculture in China[J]. Journal of Agro-Environment Science, 2014, 33(11):2279-2280.]
[8] 杨复沫, 段凤魁, 贺克斌. PM2.5的化学物种采样与分析方法[J]. 中国环境监测, 2004, 20(5):14-20.[YANG F M, DUAN F K, HE K B. PM2.5 speciation sampling and analysis methods[J]. Environmental Monitoring in China, 2004, 20(5):14-20.]
[9] SHALTOUT A A, BOMAN J, AL-MALAWI D R, et al. Elemental composition of PM2.5 particles sampled in industrial and residential areas of Taif, Saudi Arabia[J]. Aerosol and Air Quality Research, 2013, 13(4):1356-1364.
[10] 郑玫, 张延君, 闫才青, 等. 上海PM2.5工业源谱的建立[J]. 中国环境科学, 2013, 33(8):1354-1359.[ZHENG M, ZHANG Y J, YAN C Q, et al. Establishing PM2.5 industrial source profiles in Shanghai[J]. China Environmental Science, 2013, 33(8):1354-1359.]
[11] 戴海夏, 宋伟民, 高翔, 等. 上海市A城区大气PM10、PM2.5污染与居民日死亡数的相关分析[J]. 卫生研究, 2004, 33(3):293-297.[DAI H X, SONG W M, GAO X, et al. Study on relationship between ambient PM10, PM2.5 pollution and daily mortality in a district in Shanghai[J]. Journal of Hygiene Research, 2004, 33(3):293-297.]
[12] FANG W X, YANG Y C, XU Z M. PM10 and PM2.5 and health risk assessment for heavy metals in a typical factory for cathode ray tube television recycling[J]. Environmental Science & Technology, 2013, 47(21):12469-12476.
[13] 王振波, 方创琳, 许光, 等. 2014年中国城市PM2.5浓度的时空变化规律[J]. 地理学报, 2015, 70(11):1720-1734.[WANG Z B, FANG C L, XU G, et al. Spatial-temporal characteristics of the PM2.5 in China in 2014[J]. Acta Geographica Sinica, 2015, 70(11):1720-1734.]
[14] CHEN L W A, CHOW J C, DODDRIDGE B G, et al. Analysis of a summertime PM2.5 and haze episode in the mid-Atlantic region[J]. Journal of the Air & Waste Management Association, 2003, 53(8):946-956.
[15] 黄巍, 龙恩深. 成都PM2.5与气象条件的关系及城市空间形态的影响[J]. 中国环境监测, 2014, 30(4):93-99.[HUANG W, LONG E S. The Relationship between PM2.5 and meteorological conditions in Chengdu and the impact of urban spatial morphology[J]. Environmental Monitoring in China, 2014, 30(4):93-99.]
[16] 戴昭鑫, 张云芝, 胡云锋, 等. 基于地面监测数据的2013~2015年长三角地区PM2.5时空特征[J]. 长江流域资源与环境, 2016, 25(5):813-821.[DAI Z X, ZHANG Y Z, HU Y F, et al. Spatial-temporal characteristics of PM2.5 in Yangtze River Delta (YRD) Region based on the ground monitoring data from 2013-2015[J]. Resources and Environment in the Yangtze Basin, 2016, 25(5):813-821.]
[17] 程真, 陈长虹, 黄成, 等. 长三角区域城市间一次污染跨界影响[J]. 环境科学学报, 2011, 31(4):686-694.[CHENG Z, CHEN C H, HUANG C, et al. Trans-boundary primary air pollution between cities in the Yangtze River Delta[J]. Acta Scientiae Circumstantiae, 2011, 31(4):686-694.]
[18] 李莉, 安静宇, 卢清. 清洁空气行动计划实施对长三角地区PM2.5污染改善效果模拟评估[J]. 环境科学研究, 2015, 28(11):1653-1661.[LI L, AN J Y, LU Q. Modeling assessment of PM2.5 concentrations under implementation of clean air action plan in the Yangtze River Delta Region[J]. Research of Environmental Sciences, 2015, 28(11):1653-1661.]
[19] 邓林, 吴俊锋, 任晓鸣, 等. 基于长三角地区空气重污染事件预警与应急机制的探讨[J]. 生态经济, 2014, 30(7):161-163, 178.[DENG L, WU J F, REN X M, et al. The discussion of heavy air pollution incident early warning and emergency mechanism based on Yangtze River Delta Region[J]. Ecological Economy, 2014, 30(7):161-163, 178.]
[20] 吕森林, 陈小慧, 吴明红, 等. 上海市PM2.5的物理化学特征及其生物活性研究[J]. 环境科学, 2007, 28(3):472-477.[LV S L, CHEN X H, WU M H, et al. Physicochemistry and bioreactivity characterization of fine particles (PM2.5) in Shanghai Air[J]. Environmental Science, 2007, 28(3):472-477.]
[21] 杨卫芬, 银燕, 魏玉香, 等. 霾天气下南京PM2.5中金属元素污染特征及来源分析[J]. 中国环境科学, 2010, 30(1):12-17.[YANG W F, YIN Y, WEI Y X, et al. Characteristics and sources of metal elements in PM2.5 during hazy days in Nanjing[J]. China Environmental Science, 2010, 30(1):12-17.]
[22] 焦荔, 包贞, 洪盛茂, 等. 杭州市大气细颗粒物PM2.5中多环芳烃含量特征研究[J]. 中国环境监测, 2009, 25(1):67-70.[JIAO L, BAO Z, HONG S M, et al. Study on the pollution characteristics of PAHs in Ambient PM2.5 of Hangzhou city[J]. Environmental Monitoring in China, 2009, 25(1):67-70.]
[23] 周天墨, 付强, 诸云强, 等. 空间自相关方法及其在环境污染领域的应用分析[J]. 测绘通报, 2013(1):53-56.[ZHOU T M, FU Q, ZHU Y Q, et al. Research on the application of spatial autocorrelation method in environmental pollution[J]. Bulletin of Surveying and Mapping, 2013(1):53-56.]
[24] 姜澒月, 闫亚琛, 李海蓉. 中国2013年城市大气污染现状及探索性空间数据分析[J]. 安全与环境学报, 2016, 16(2):352-357.[JIANG H Y, YAN Y C, LI H R. Urban air pollution status in-situ in China and an exploratory spatial data analysis in the year of 2013[J]. Journal of Safety and Environment, 2016, 16(2):352-357.]
[25] GOODCHILD M F, ANSELIN L, APPELBAUM R P, et al. Toward spatially integrated social science[J]. International Regional Science Review, 2000, 23(2):139-159.
[26] 王劲峰. 空间分析[M]. 北京:科学出版社, 2006:92-96.[WANG J F. Spatial Analysis[M]. Beijing:Science Press, 2006:92-96.]
[27] 卢德彬, 涂建军, 邹韬, 等. 基于GIS的重庆市经济空间差异的ESDA分析[J]. 西南大学学报(自然科学版), 2011, 33(8):157-161.[LU D B, TU J J, ZOU T, et al. An analysis of regional economic disparities of Chongqing based on ESDA and GIS[J]. Journal of Southwest University (Natural Science Edition), 2011, 33(8):157-161.]
[28] 徐建华. 计量地理学[M]. 北京:高等教育出版社, 2006.[XU J H. Quantitative Geography[M]. Beijing:Higher Education Press, 2006. (未找到本条文献英文信息, 请核对)]
[29] 王宏, 陈晓秋, 余永江, 等. 福州市PM2.5、PM2.5/PM10分布特征及与气象条件关系的初步分析[J]. 热带气象学报, 2014, 30(2):387-391.[WANG H, CHEN X Q, YU Y J, et al. Preliminary analyses on distribution characteristics of PM2.5、PM2.5/PM10 and its relationship with meteorological conditions in Fuzhou[J]. Journal of Tropical Meteorology, 2014, 30(2):387-391.]
[1] 孔锋, 杨萍, 王品, 吕丽莉, 孙劭. 中国灾害性对流天气日数的时空变化特征[J]. 长江流域资源与环境, 2018, 27(11): 2518-2528.
[2] 武晓静, 杜德斌, 肖刚, 管明明. 长江经济带城市创新能力差异的时空格局演变[J]. 长江流域资源与环境, 2017, 26(04): 490-499.
[3] 赵志刚, 余德, 韩成云, 王凯荣. 2008~2016年鄱阳湖生态经济区生态系统服务价值的时空变化研究[J]. 长江流域资源与环境, 2017, 26(02): 198-208.
[4] 彭霞, 郭冰瑶, 魏宁, 佘倩楠, 刘敏, 象伟宁. 近60 a长三角地区极端高温事件变化特征及其对城市化的响应[J]. 长江流域资源与环境, 2016, 25(12): 1917-1926.
[5] 张雅杰, 马明, 许刚. 长江中游城市群经济与生态成本空间演化模式分析[J]. 长江流域资源与环境, 2016, 25(11): 1679-1686.
[6] 滕加泉, 程钟, 梁丹妮, 马咸, 吴建会. 常州市大气PM2.5中水溶性离子组成及来源[J]. 长江流域资源与环境, 2016, 25(09): 1368-1374.
[7] 胡小飞, 傅春, 陈伏生, 杨丽. 基于水足迹的区域生态补偿标准及时空格局研究[J]. 长江流域资源与环境, 2016, 25(09): 1430-1437.
[8] 刘睿, 周李磊, 彭瑶, 嵇涛, 李军, 张虹, 戴技才. 三峡库区重庆段土壤保持服务时空分布格局研究[J]. 长江流域资源与环境, 2016, 25(06): 932-942.
[9] 戴昭鑫, 张云芝, 胡云锋, 董昱. 基于地面监测数据的2013~2015年长三角地区PM2.5时空特征[J]. 长江流域资源与环境, 2016, 25(05): 813-821.
[10] 吕文, 杨桂山, 万荣荣. 太湖流域近25年土地利用变化对生态耗水时空格局的影响[J]. 长江流域资源与环境, 2016, 25(03): 445-452.
[11] 肖刚, 杜德斌, 李恒, 戴其文. 长江中游城市群城市创新差异的时空格局演变[J]. 长江流域资源与环境, 2016, 25(02): 199-207.
[12] 刘耀林, 范建彬, 孔雪松, 张梦珂, 刘艳芳. 中国城市土地消耗强度的时空格局与收敛性分析[J]. 长江流域资源与环境, 2016, 25(01): 113-119.
[13] 顾凯华, 史红仙, 张帅, 樊曙先, 许建明, 谈建国. 上海崇明岛近三年PM2.5浓度变化特征与气象条件的关系[J]. 长江流域资源与环境, 2015, 24(12): 2108-2116.
[14] 杨芳, 潘晨, 贾文晓, 刘敏, 义白璐, 象伟宁. 长三角地区生态环境与城市化发展的区域分异性研究[J]. 长江流域资源与环境, 2015, 24(07): 1094-1101.
[15] 雷娟, 梁阳阳, 隋晓云, 陈毅峰. 长江上游支流老河沟鱼类群落结构的时空格局[J]. 长江流域资源与环境, 2015, 24(07): 1126-1132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[5] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[9] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .