长江流域资源与环境 >> 2019, Vol. 28 >> Issue (01): 166-174.doi: 10.11870/cjlyzyyhj201901017

• 生态环境 • 上一篇    下一篇

鄱阳湖滨岸土壤磷素吸附特征研究

赵树成1,张展羽1*,夏继红1,杨洁2,盛丽婷1,唐丹1,陈晓安1,2   

  1. (1.河海大学农业工程学院,江苏 南京 210098;2.江西省水土保持科学研究院,江西 南昌 330029)
  • 出版日期:2019-01-20 发布日期:2019-02-20

Phosphorus Adsorption Characteristics of Riparian Soils Surrounding Poyang Lake

ZHAO Shu-cheng1,ZHANG Zhan-yu1, XIA Ji-hong1,YANG Jie2, SHENG Li-ting1,TANG Dan1,CHEN Xiao-an1,2   

  1. (1.College of Agricultural Engineering,Hohai University,Nanjing 210098,China;
    2.Jiangxi Institute of Soil and Water Conservancy,Nanchang 330029,China)
  • Online:2019-01-20 Published:2019-02-20

摘要:  分层采集鄱阳湖近水滨岸土壤进行磷的吸附动力学及等温吸附试验,探讨不同位置滨岸土壤的总磷(TP)含量及其对磷吸附解吸特性的差异。结果表明:不同滨岸带土壤TP差异极显著(F=7.103,p < 0.01),赣江入湖口滨岸土壤总磷含量显著高于其他滨岸土壤,且0 ~ 20 cm土层TP含量(635 mg·kg-1)>20 ~ 40 cm土层(393 mg·kg-1)。各滨岸土壤的磷素动力学过程相似:即分为“快速吸附(0 ~ 2 h)”、“缓慢吸附(2 ~ 24 h)”与“吸附平台(> 24 h)”3个阶段,平衡吸附量(Qe)最大值为216.0 mg·kg-1;Langmuir模型对磷的等温吸附拟合度为0.951~0.995,表层土壤最大吸附量(Qmax)高于下层土壤,饶河(629.12 mg·kg-1)吸附量最大,康山大堤(340.72 mg·kg-1)最小。滨岸表层土壤吸附解吸平衡浓度(EPC0)小于0.1 mg·L-1,磷流失风险较小,东部滨岸土壤对外源磷的缓冲能力优于西南滨岸土壤,最大吸附量与TP呈现极显著正相关。

Abstract: Riparian soils surrounding Poyang Lake were stratified collected for phosphorus adsorption kinetics study and the experiment of isothermal adsorption. The results of this experiment were then analyzed and fitted. It shows that, the concentrations of soil total phosphorus from different riparian zones varies greatly (F=7.103, p<0.01). The content of total phosphorus in riparian soil of the Gan River entrance is significantly higher than those of other riparian soils. Meanwhile, total phosphorus content of at the 0~20 cm depth (635 mg·kg-1) is higher than that at the 20~40 cm depth (393 mg·kg-1). Phosphorus adsorption kinetics in different riparian soils have similar trends. During 0~2 h, soils quickly adsorbed the phosphorus in the solution; during 2~24 h, the adsorption of phosphorus in soils decreased; after 24 hours, the tendency of phosphorus adsorption gradually flatted. The maximum value of equilibrium adsorption capacity (Qe) is 216.0 mg·kg-1. The isothermal adsorption fitting degree of Langmuir model for phosphorus is 0.951~0.995, which indicates that the maximum adsorption capacity (Qmax) of surface soils is higher than that of the subsurface soils. Soils from the Rao River entrance have the largest amount of adsorption (629.12 mg·kg-1), while soils from the Thornhill have the smallest amount of adsorption (340.72 mg·kg-1). The equilibrium phosphate concentration (EPC0) of the surface soils in the riparian of Poyang Lake is less than 0.1 mg·L-1. So the risk of phosphorus loss is small. The buffering capacity of exogenous phosphorus in the eastern riparian soils is better than that of the southwest riparian soils. Last but not least, the maximum adsorption capacity is positively correlated with TP.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽平|郑丙辉. 大宁河叶绿素a的因子分值-多元线性回归预测模型研究[J]. 长江流域资源与环境, 2011, 20(09): 1120 .
[2] 傅春, 欧阳莹, 陈炜. 环鄱阳湖区水足迹的动态变化评价[J]. 长江流域资源与环境, 2011, 20(12): 1520 .
[3] 宋春风 |陶和平|刘斌涛|史展| 郭 兵|华娟. 长江上游地区土壤可蚀性空间分异特征[J]. 长江流域资源与环境, 2012, 21(9): 1123 .
[4] 辛朋磊|仇娟娟|宋建军|陈建标. 南通市沿海开发水资源保障能力评价研究[J]. 长江流域资源与环境, 2012, 21(10): 1179 .
[5] 张 杰 |陈 熙 |刘倩纯 |吴 兰. 鄱阳湖主要入湖口重金属的分布及潜在风险评价[J]. 长江流域资源与环境, 2014, 23(01): 95 .
[6] 杜晓芹, 王 芳, 赵卉卉, 王 远, 朱晓东. 基于CVM的武进港水环境综合整治工程环境价值支付/受偿意愿评估[J]. 长江流域资源与环境, 2014, 23(04): 449 .
[7] 于忠华, 李文青, 刘海滨, 秦海旭. 快速发展地区经济增长与资源环境协调性分析——以南京为例[J]. 长江流域资源与环境, 2015, 24(10): 1698 -1704 .
[8] 龚艳冰, 胡娜, 刘高峰, 冯兰萍. 基于GEV干旱指数和DFA方法的苏北地区季节性干旱研究[J]. 长江流域资源与环境, 2016, 25(01): 140 -146 .
[9] 李向富, 刘目兴, 易军, 吴四平, 杨叶, 娄淑兰, . 峡山地不同垂直带土壤层的水文功能及其影响因子[J]. 长江流域资源与环境, 2018, 27(08): 1809 .
[10] 何松蔚, 王成刚, 姜海梅, 曹乐, 王新伟. 2015年冬季苏州城市热岛特征研究[J]. 长江流域资源与环境, 2018, 27(09): 2078 .