长江流域资源与环境 >> 2020, Vol. 29 >> Issue (6): 1333-1342.doi: 10.11870/cjlyzyyhj202006008

• 自然资源 • 上一篇    下一篇

长江上游不平衡水沙输运对三峡库区泥沙淤积影响

刘  洁 1,2,沈  颖 1,2,杨树青 3   

  1. (1. 重庆交通大学 国家内河航道工程技术研究中心, 重庆 400074; 2. 重庆交通大学 水利水运工程教育部重点实验室, 重庆 400074; 3.天津大学 水利仿真与安全国家重点实验室, 天津 300072)
  • 出版日期:2020-06-20 发布日期:2020-07-20

Influence of Non-Balanced Water and Sediment Transport in the Upper Yangtze River on Sediment Siltation in the Three Gorges Reservoir Area

LIU Jie 1,2, SHEN Ying 1,2, YANG Shu-qing 3   

  1. (1. National Inland Waterway Regulation Engineering Research Center, Chongqing Jiaotong University, Chongqing 400074, China; 2. Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China; 3. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China)
  • Online:2020-06-20 Published:2020-07-20

摘要:

摘  要:2003~2017年以三峡水库为核心的长江上游水库群运行和联合调度从宏观上改变上游河流泥沙时空分布规律,金沙江已不是三峡入库泥沙最大供沙区;长江上游水沙输运集中在汛期5~10月,1956~2002年水沙峰值基本同步,而三峡水库蓄水后2003~2017年水沙峰值不同步,流量特性曲线由顺时针转为逆时针,出现滞后现象。入库泥沙锐减后并未降低三峡库区细颗粒泥沙淤积率,2014~2017年汛期5~10月淤积率增加至85.2%,其中d < 0.031 mm的极易发生絮凝的泥沙所占比例最高(63.5%,2009~2013年),典型河段现场观测到大量泥沙絮团,所以三峡库区极可能存在细颗粒泥沙絮凝。入库水沙不平衡也使得朱沱-清溪场河段出现泥沙冲刷。

Abstract: Abstract:with operation of reservoirs in the upper Yangtze River with the Three Gorges Reservoir as the core on the period of 2003-2017, the temporal and spatial distribution of sediment in upper Yangtze River has been changed Macroscopically, Jinsha River is no longer the largest sediment supply area for the TGR. The water and sediment transport in the upper Yangtze River is concentrated in the flood season from May to October, the peak of water and sediment between 1956 and 2002 is basically synchronized, but it has changed in the period of 2003-2017, and the flow characteristic curve changed from clockwise to counterclockwise. Though sedimentation in the TGR has been reduced sharply from 2014 to 2017, sediment siltation rate is still high (85.2%). Sedimentation of sediment d < 0.031 mm which can easily flocculated takes up the highest proportion in the backwater area of the TGR(63.5%,2009-2013), In addition, a large number of sediment flocs observed in the typical river reaches suggest that there is a high probability of fine-grained sediment flocculation in the TGR. Unbalanced water and sediment transport also caused sediment erosion in the reach of Zhutuo-Qingxichang.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 解晓南,许朋柱,秦伯强. 太湖流域苏锡常地区地面沉降若干问题探析[J]. 长江流域资源与环境, 2005, 14(1): 125 -131 .
[2] 王玉蓉,李嘉| 李克锋,芮建良. 雅砻江锦屏二级水电站减水河段生态需水量研究[J]. 长江流域资源与环境, 2007, 16(1): 81 -85 .
[3] 曹银贵,王 静,程 烨,刘爱霞,许 宁,郝 银,饶彩霞. 三峡库区土地利用变化与影响因子分析[J]. 长江流域资源与环境, 2007, 16(6): 748 .
[4] 禹 娜,陈立侨,赵泉鸿. 太湖介形类动物丰度与生物量[J]. 长江流域资源与环境, 2008, 17(4): 546 .
[5] 李春华,李 宁,史培军. 基于SOM模型的中国耕地压力分类研究[J]. 长江流域资源与环境, 2007, 16(3): 318 .
[6] 吴炳方,罗治敏. 基于遥感信息的流域生态系统健康评价——以大宁河流域为例[J]. 长江流域资源与环境, 2007, 16(1): 102 -106 .
[7] 王舒曼,谭 荣,吴丽梅. 农地资源舒适性价值评估——以江苏省为例[J]. 长江流域资源与环境, 2005, 14(6): 720 -724 .
[8] 段学军, 陈 雯. 省域空间开发功能区划方法探讨[J]. 长江流域资源与环境, 2005, 14(5): 540 -545 .
[9] 许树辉. 地块尺度耕地质量评价与方法探讨——以湖南省浏阳市为例[J]. 长江流域资源与环境, 2004, 13(1): 47 -52 .
[10] 潘竟虎. 近15年来长江源区土地利用变化及其生态环境效应[J]. 长江流域资源与环境, 2005, 14(3): 310 -315 .