长江流域资源与环境 >> 2020, Vol. 29 >> Issue (7): 1486-1496.doi: 10.11870/cjlyzyyhj202007002

• 区域可持续发展 • 上一篇    下一篇

长三角地区碳排放效率时空特征及影响因素分析

李建豹1,2,黄贤金3,4* ,揣小伟3,孙树臣5   

  1. (1.南京财经大学公共管理学院,江苏 南京 210023;2.南京财经大学政府管理研究中心,江苏 南京 210023;3.南京大学地理与海洋科学学院,江苏 南京 210023;4.国土资源部海岸带开发与保护重点实验室,江苏 南京 210023;5. 聊城大学环境与规划学院,山东 聊城 252059)
  • 出版日期:2020-07-20 发布日期:2020-08-28

Spatiotemporal Characteristics and Influencing Factors of Carbon Emissions Efficiency in the Yangtze River Delta Region

LI Jianbao 1,2,HUANG Xianjin 3,4,CHUAI Xiaowei 3,SUN Shuchen 5   

  1. (1. School of Public Administration, Nanjing University of Finance & Economics, Nanjing 210023, China; 2. Centre for Government Studies, Nanjing University of Finance & Economics, Nanjing 210023, China; 3. College of Geography and Oceanography Sciences, Nanjing University, Nanjing 210023, China; 4. The Key Laboratory of the Coastal Zone Exploitation and Protection, Ministry of Land and Resources, Nanjing 210023, China; 5. School of Environment and Planning, Liaocheng University, Liaocheng 252059, China)
  • Online:2020-07-20 Published:2020-08-28

摘要: 长三角区域一体化发展战略上升为国家战略,要求建立区域间协调机制,引导低碳产业,弥补绿色发展的短板。掌握长三角地区碳排放效率时空特征及其影响因素,对长三角地区低碳高效发展及顺利实现碳减排目标具有重要的现实意义。基于考虑非期望产出的SBMDEA模型与窗口分析相结合的方法,测算碳排放效率,利用传统统计分析与空间分析相结合的方法,分析了1995~2017年长三角地区碳排放效率时空特征,并考虑空间因素,构建空间杜宾面板模型分析其影响因素。结果表明:(1)1995~2017年碳排放效率总体呈波动变化趋势。2017年,上海、苏州和无锡的碳排放效率为1。碳排放效率绝对差异与相对差异呈波动变化,且变化趋势基本一致。碳排放效率存在不均衡现象。(2)碳排放效率区域差异明显,2005年后,空间格局变化不大,上海、苏州和无锡形成了碳排放效率高值区。碳排放效率重心主要分布在南京市,总体向西北移动。(3)空间杜宾面板模型结果表明:提高技术水平是改变碳排放效率的重要途径。城镇化和空间因素对碳排放效率具有明显的正向作用;外商投资、单位GDP能耗和生态环境对碳排放效率具有明显的负向作用。

Abstract: The development strategy of regional integration in the Yangtze River Delta region has risen to a national strategy, which requires the establishment of interregional coordination mechanism to guide lowcarbon industries and make up for the shortcomings of green development. Mastering the spatiotemporal characteristics and influencing factors of carbon emissions efficiency is of great practical significance for the low carbon development and the realization of carbon emission reduction target in the Yangtze River Delta region. Based on the combination of SBM model and window analysis, the carbon emissions efficiency was calculated. The spatiotemporal characteristics of carbon emissions efficiency in the Yangtze River Delta from 1995 to 2017 was analyzed by traditional statistical analysis and spatial analysis. Meanwhile, the spatial Durbin panel model was constructed to analyze its influencing factors. The results are shown as follows: (1) The carbon emissions efficiency showed a fluctuating trend over the period of 1995-2017. In 2017, Shanghai, Suzhou and Wuxi had the largest carbon emissions efficiency of 1. The absolute difference and relative difference in carbon emissions efficiency showed fluctuating trend, and the change trend is basically consistent. There was an imbalance in the carbon emissions efficiency. (2) There was obvious spatial disparity for carbon emissions efficiency, the spatial pattern of carbon emissions efficiency changed little since 2005. The high carbon emissions efficiency areas were mainly concentrated in Shanghai, Suzhou and Wuxi. The gravity center of carbon emissions efficiency was mainly distributed in Nanjing City, and moved to the northwest. (3) The results of spatial Durbin panel  model show that improving the technical  level is an important way to change the carbon emissions efficiency. Urbanization and spatial factors played a significantly positive effect role in improving carbon emissions efficiency, foreign investment, energy consumption per unit GDP and ecological environment  have a significantly negative impact on carbon emissions efficiency.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌成星, 张怀清, 林 辉. 利用混合水体指数模型(CIWI)提取滨海湿地水体的信息[J]. 长江流域资源与环境, 2010, 19(2): 152 .
[2] 章茹|蒋元勇|万金保|戴年华|李述. 城镇化过程对鄱阳湖流域生态系统的影响[J]. 长江流域资源与环境, 2014, 23(03): 400 .
[3] 李明, 傅斌, 王玉宽, 彭培好, 严坤. 岷江上游水电开发特点及其空间格局分析[J]. 长江流域资源与环境, 2015, 24(01): 74 .
[4] 李云良, 张奇, 李淼, 姚静. 基于BP神经网络的鄱阳湖水位模拟[J]. 长江流域资源与环境, 2015, 24(02): 233 .
[5] 张千千, 缪丽萍, 孙继朝, 刘景涛. 稳定同位素识别水体硝酸盐污染来源的研究进展[J]. 长江流域资源与环境, 2015, 24(05): 742 -749 .
[6] 张延兵, 陶建斌, 刘鹏程, 徐京京. 基于时间序列MODIS数据的贵州省森林物候地域分异[J]. 长江流域资源与环境, 2015, 24(11): 1891 -1897 .
[7] 姜大川, 肖伟华, 范晨媛, 宫博亚. 武汉城市圈水资源及水环境承载力分析[J]. 长江流域资源与环境, 2016, 25(05): 761 -768 .
[8] 赵璊璊, 冯 莉, 郭 松, 田慧慧. 景观格局影响下的南京市热舒适度动态变化[J]. 长江流域资源与环境, 2018, 27(08): 1712 .
[9] 杨佳, 葛馨, 吴起鑫. 贵阳市主城区空气质量指数时空分布特征[J]. 长江流域资源与环境, 2018, 27(08): 1827 .
[10] 代培, 阎明军, 周游, 周彦锋, 熊满晖, 卢剑达, 刘凯.  

太湖五里湖沿岸带浮游植物群落生态特征(2014~2015) [J]. 长江流域资源与环境, 2018, 27(10): 2348 -2357 .