长江流域资源与环境 >> 2015, Vol. 24 >> Issue (07): 1207-1213.doi: 10.11870/cjlyzyyhj201507018

• 生态环境 • 上一篇    下一篇

“城郊乡”梯度下土壤Cu、Zn、Pb含量的空间变异特征

柳云龙1, 章立佳1, 庄腾飞1, 韩晓非2, 卢小遮1   

  1. 1. 上海师范大学地理系, 上海 200234;
    2. 上海闵行区环境保护局, 上海 201100
  • 收稿日期:2014-08-18 修回日期:2014-10-12 出版日期:2015-07-20
  • 作者简介:柳云龙(1971~),男,副教授,博士,主要研究方向为城市生态与环境.E-mail:liu_zju@126.com
  • 基金资助:
    闵行区自然科学研究项目(2014MHZ002);上海市教委重点学科建设项目资助(J50402);上海地方本科院校"十二五"内涵建设项目

SPATIAL VARIABILITY AND DISTRIBUTION OF SOIL Cu,Zn AND Pb IN GRADIENT URBAN-TRANSECT

LIU Yun-long1, ZHANG Li-jia1, ZHUANG Teng-fei1, HAN Xiao-fei2, LU Xiao-zhe1   

  1. 1. Geography Department, Shanghai Normal University, Shanghai 200234, China;
    2. Minhang Environment Protection Bureau, Shanghai 201100, China
  • Received:2014-08-18 Revised:2014-10-12 Online:2015-07-20

摘要: 为揭示城市化、工业化等人为活动对土壤环境质量的影响,选择能反映上海城郊乡梯度差异的中心城区、城郊结合部和远郊,采用地统计学方法对表层土壤样品Cu、Zn、Pb的空间变异结构和分布特征进行了对比分析。结果表明:城市土壤Pb、Cu、Zn的变异系数范围为0.24~0.62,均属中等变异强度。徐汇区土壤Cu、Pb、Zn符合正态分布,闵行区土壤Cu、Pb和Zn符合对数正态分布,奉贤区土壤Zn呈正态分布,土壤Cu、Pb符合对数正态分布。由中心城区到远郊,城市土壤Cu、Pb、Zn的各项统计特征值和变异系数均有较大差异,存在明显的空间分布差异。半方差函数分析结果表明,徐汇区作为中心城区,土壤Cu、Pb、Zn符合球状模型,土壤Cu、Zn具有强烈的空间相关性,土壤Pb具有明显的空间自相关。奉贤区以农业用地为主,土壤Pb符合线性模型,土壤Cu符合高斯模型,土壤Zn符合指数模型,具有强烈的空间相关性。闵行区地处城郊结合部,土壤Cu、Pb、Zn的半方差拟合模型均为线性模型,表现为纯块金形式,以随机变异为主,空间相关性弱。采用Kriging最优内插法进行无偏估值,绘制了表层土壤重金属含量的空间分布图,中心城区、城郊结合部、郊区土壤重金属的空间分布受城市化、工业化、城市交通等因素的影响,均表现出不同的空间分布规律。

关键词: 土壤重金属, 地统计学, 空间变异, 城市土壤, 城市化

Abstract: With rapid development of regional socio-economy, the accumulation and pollution of heavy metals in urban soils has become increasingly prominent. The study of distribution and sources of soil heavy metals can provide a theoretical basis to protect the ecological environment and construct suitable living environment. Soil heavy metals concentrations along the typical urban-rural gradient (City Center, Suburbs and Outer Suburbs) in Shanghai were analyzed to investigate the effect of urbanization and industrialization on soil environment quality. Spatial variation structure and distributions of soil heavy metals (Cu, Pb and Zn) in the top soil along the urban-rural gradient were analyzed. Descriptive statistics and geostatistics were used to analyze the spatial variation structure and distributions of the 3 heavy metals (Cu, Pb and Zn) in the top soil along the urban-rural gradient. The results showed that the coefficients of variation (CV) for Pb, Cu and Zn ranged between0.24 and 0.62, which demonstrated a moderate variation. The total content of Pb, Cu and Zn showed normal distributions in the Xuhui District, while showed log-normal distributions in the Minhang District. Zn showed normal distribution, while Pb and Cu showed log-normal distribution in the Fengxian District. From City Center to Outer Suburbs, the obvious variation exited in the spatial distribution of Cu, Pb and Zn. The results of semivariance analysis showed that Pb, Cu and Zn can be fitted with the spherical model, the strong spatial correlation for Cu, Zn and obvious spatial correlation for Pb exited in the Xuhui District as a fully urbanized area. Pb were fit with the linear model, Cu were fit with the Gaussian model and Zn were fitted with the exponential model, the strong spatial correlation for Pb, Cu and Zn exited in the Fengxian District with agriculture lands. Pb, Cu and Zn were fitted with the linear model, especially the pure nugget model, the strong randomness and the weak spatial correlation for Pb, Cu and Zn exited in suburbs, the Minhang District. The non-sampled locations were estimated and the spatial distribution maps of heavy metal content of the topsoil were obtained using the Kriging method. The results indicated that the spatial distribution of Pb, Cu and Zn content in City Center, Suburbs and Outer Suburbs were obviously different. The variation of soil Cu, Pb, and Zn were weakened and the structural factors of the spatial distribution were increased from the city center to the outer suburbs. The main influencing factors were urbanization, industrialization and traffic pollution.

Key words: soil heavy metals, geostatistics, spatial variability, urban soil, urbanization

中图分类号: 

  • X35
[1] 张甘霖,赵玉国,杨金玲,等.城市土壤的环境问题及其研究进展[J].土壤学报,2006,44(5):925-933.
[2] 张金屯,POUYAT R."城-郊-乡"生态样带森林土壤重金属变化格局[J].中国环境科学,1997,17(5):410-413.
[3] 李晓燕,陈同斌,雷 梅,等.不同土地利用方式下北京城区土壤的重金属累积特征[J].环境科学学报,2010,30(11):2285-2293.
[4] 康玲芬,李锋瑞,张爱胜,等.交通污染对城市土壤和植物的影响[J].环境科学,2006,27(3):556-560.
[5] HU X F,WU H X,HU X,et al.Impact of urbanization on Shanghai soil environmental quality[J].Pedosphere,2004,14(2):151-158.
[6] LI X P,HUANG C C.Environment impact of heavy metals on urban soil in the vicinity of industrial area of Baoji city,P.R.China[J].Environmental Geology,2007,5(2):1631-1637.
[7] 吴新民,李恋卿,潘根兴,等.南京市不同功能城区土壤中重金属Cu、Zn 、Pb和Cd 的污染特征[J].环境科学,2003,24(3):105-111.
[8] 杨元根,PETERSON E,CAMPBELL C.城市土壤中重金属元素的积累及其微生物效应[J].环境科学,2001,22(3):44-48.
[9] WANG X S,QIN Y,CHEN Y K.Heavy meals in urban roadside soils,part 1:effect of particle size fractions on heavy metals partitioning[J].Environmental Geology,2006,50:1061-1066.
[10] 康玲芬,李锋瑞,化 伟,等.不同的土地利用方式对城市土壤质量的影响[J].生态科学,2006,25(1):59-63.
[11] JIM C Y.Soil characteristics and management in an urban park in Hong Kong[J].Environmental Management,1998,22(5):683-695.
[12] RUIZ-CORTES E,REINOSO R,DIAZ-BARRIENTOS E,et al.Concentrations of potentially toxic metals in urban soils of Seville:relationship with different land uses[J].Environmental Geochemistry and Health,2005,27:465-474.
[13] 钟晓兰,周生路,李江涛,等.长江三角洲地区土壤重金属污染的空间变异特征:以江苏省太仓市为例[J].土壤学报,2007,44(1):33-39.
[14] 贾华清,章明奎.杭州市城市土壤重金属的积累和释放潜力及其空间分异[J].浙江大学学报:农业与生命科学版,2007,3(6):677-684.
[15] MARACHE A,BREYSSE D,PIETTE C,et al.Geotechnical modeling at the city scale using statistical and geostatistical tools:The Pessac case (France)[J].Engineering Geology,2009,107:67-76.
[16] CANNON W F,HORTON J D.Soil geochemical signature of urbanization and industrialization-Chicago,Illinois,USA[J].Applied Geochemistry,2009,24:1590-1601.
[17] YANG P G,MAO R Z,SHAO H B,et al.The spatial variability of heavy metal distribution in the suburban farmland of Taihang Piedmont Plain,China.C.R[J].Biologies,2009,332:558-566.
[18] CANNON W F,JOHN D H.Soil geochemical signature of urbanization and industrialization-Chicago,Illinois,USA[J].Applied Geochemistry,2009,24:1590-1601.
[1] 张文婷. 江西省不同地貌单元耕地土壤有机碳空间变异的尺度效应[J]. 长江流域资源与环境, 2018, 27(11): 2619-2628.
[2] 彭霞, 郭冰瑶, 魏宁, 佘倩楠, 刘敏, 象伟宁. 近60 a长三角地区极端高温事件变化特征及其对城市化的响应[J]. 长江流域资源与环境, 2016, 25(12): 1917-1926.
[3] 董立宽, 方斌, 施龙博, 马鑫雨, 郑俊. 茶园土壤速效磷乡镇尺度下空间异质性对比分析——以江浙地区优质名茶种植区为例[J]. 长江流域资源与环境, 2016, 25(10): 1576-1584.
[4] 党丽娜, 梅杨, 廖祥森, 刘颖颖. 城市不同交通圈(带)土壤重金属多元统计分析及空间分布研究——以武汉市为例[J]. 长江流域资源与环境, 2016, 25(06): 925-931.
[5] 黄亚林, 丁镭, 张冉, 刘超, 曾克峰. 武汉城市圈城市化发展与环境空气质量关系探讨[J]. 长江流域资源与环境, 2015, 24(12): 2117-2124.
[6] 朱希扬, 潘晨, 刘敏, 杨芳, 贾文晓, 象伟宁. 上海春季近地面大气CO2浓度空间分布特征及其影响因素分析[J]. 长江流域资源与环境, 2015, 24(09): 1443-1450.
[7] 易予晴, 龙腾飞, 焦伟利, 彭剑威, 刘慧婵, 凌赛广. 武汉城市群夏季热岛特征及演变[J]. 长江流域资源与环境, 2015, 24(08): 1279-1285.
[8] 杨芳, 潘晨, 贾文晓, 刘敏, 义白璐, 象伟宁. 长三角地区生态环境与城市化发展的区域分异性研究[J]. 长江流域资源与环境, 2015, 24(07): 1094-1101.
[9] 张维, 李启权, 王昌全, 袁大刚, 罗由林, 张新, 贾荔. 川中丘陵县域土壤pH空间变异及影响因素分析——以四川仁寿县为例[J]. 长江流域资源与环境, 2015, 24(07): 1192-1199.
[10] 丁镭, 方雪娟, 赵委托, 程胜高. 城市化进程中的武汉市空气环境响应特征研究[J]. 长江流域资源与环境, 2015, 24(06): 1038-1045.
[11] 肖 平, 秦朝钧. 城市化背景下中国水电移民安置的政策选择——以龙滩水库为例[J]. 长江流域资源与环境, 2010, 19(04): 358-.
[12] 李海东, 张波, 沈渭寿, 张金池, 张晓勉, 林 杰. 苏南山丘区小流域土壤养分特性空间分布[J]. 长江流域资源与环境, 2009, 18(9): 831-.
[13] 纪昌品, 欧名豪. 湖北省经济发展与耕地资源变化的关系[J]. 长江流域资源与环境, 2009, 18(8): 693-.
[14] 秦建成. ArcGIS支持下的样本稀疏山区空间插值模拟探讨[J]. 长江流域资源与环境, 2009, 18(5): 489-.
[15] 史利江,郑丽波,柳云龙, 俞立中,贾正长. 长三角地区农田土壤养分空间变异及养分综合评价[J]. 长江流域资源与环境, 2008, 17(6): 839-839.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李崇明,黄真理. 三峡水库入库污染负荷研究(Ⅱ)——蓄水后污染负荷预测[J]. 长江流域资源与环境, 2006, 15(1): 97 -106 .
[2] 李 佳,李思悦,谭 香,张全发. 南水北调中线工程总干渠沿线经过河流水质评价[J]. 长江流域资源与环境, 2008, 17(5): 693 .
[3] 邹丽敏, 王 超, 冯士龙. 玄武湖沉积物中重金属污染的潜在生物毒性风险评价[J]. 长江流域资源与环境, 2008, 17(2): 280 .
[4] 陈 爽,王 进,. 太湖流域城市化水平及外来人口影响测评[J]. 长江流域资源与环境, 2004, 13(6): 524 -529 .
[5] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[6] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[7] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[8] 张文广,胡远满, 刘 淼,杨兆平,常 禹,李秀珍,杨 孟,问青春, . 基于土地利用变化的生态服务价值损益估算——以岷江上游地区为例[J]. 长江流域资源与环境, 2007, 16(6): 821 .
[9] 李贵祥,孟广涛,方向京,郭立群,柴 勇,和丽萍,张正海. 云南金沙江流域主要森林植被类型分布格局[J]. 长江流域资源与环境, 2008, 17(1): 51 .
[10] 冯新灵,罗隆诚,邱丽丽,. 成都未来气候变化趋势的R/S分析[J]. 长江流域资源与环境, 2008, 17(1): 83 .