长江流域资源与环境 >> 2015, Vol. 24 >> Issue (08): 1315-1321.doi: 10.11870/cjlyzyyhj201508008

• 自然资源 • 上一篇    下一篇

卫星遥感洞庭湖主汛期水体时空变化特征及影响因子分析

邵佳丽1,2, 郑伟1, 刘诚1   

  1. 1. 国家卫星气象中心, 北京 100081;
    2. 中国气象中国遥感卫星辐射测量与定标重点开放实验室, 北京 100081
  • 收稿日期:2014-09-18 修回日期:2014-12-29 出版日期:2015-08-20
  • 作者简介:邵佳丽(1986~),女,工程师,硕士,主要从事卫星遥感灾害和生态环境应用研究.E-mail:shaojl@cma.gov.cn
  • 基金资助:
    国家自然基金项目(40901231):"基于多源数据的水体湿度分量及其在淮河流域洪涝监测预警中的应用研究";中国气象局项目(CMAGJ2013M66):"长序列卫星遥感湖泊水体关键技术和应用推广";国家自然科学基金项目(41101517):"多时空尺度洪涝灾害风险评估研究"

ANALYSIS OF SPATIAL-TEMPORAL VARIATIONS IN THE MAIN FLOOD SEASON AND THEIR INFLUENCING FACTORS OF THE DONGTING LAKE BASED ON METEOROLOGICAL SATELLITE DATA

SHAO Jia-li1,2, ZHENG Wei1, LIU Cheng1   

  1. 1. National Satellite Meteorological Center, Beijing 100081, China;
    2. Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, CMS, Beijing 100081, China
  • Received:2014-09-18 Revised:2014-12-29 Online:2015-08-20
  • Contact: 郑 伟 E-mail:zhengw@cma.gov.cn E-mail:zhengw@cma.gov.cn

摘要: 基于1989~2011年的长时间序列卫星遥感数据,利用综合水体信息提取方法提取了洞庭湖区6~9月主汛期的水体信息,通过较高分辨率卫星遥感数据验证,水体面积提取精度达到90%以上。洞庭湖年平均径流入湖量、NCEP再分析资料计算的湖体上空和流域累计月平均降水量分别与水体面积变化的关系进行分析,结果表明: 1989~2011年间洞庭湖水体面积最大值主要分布在7和8月,这两个月也是洞庭湖区域发生洪涝灾情的高风险期;洞庭湖水体面积与年平均径流入湖水量的相关系数为0.67(置信度为95%);2003年以前,洞庭湖主汛期间水体面积波动比较大,2003年三峡水库运行后,洞庭湖的面积波动有所减少;洞庭湖上空累计月平均降水量对于水体面积存在正相关性,相关系数为0.68(置信度为99%);2003年以前,洞庭湖流域累计月平均降水量和水体面积相关系数为0.50(置信度为90%),2003年三峡水库运行后,两者相关性有所减弱。

关键词: 洞庭湖, 气象卫星, 长时间序列, 水体面积变化

Abstract: The study on the spatial-temporal distribution characteristics of the water in this lake and their influence factors is useful to research the climate events and the balance of sediment transport in this region. In this paper, based on the long-time meteorological satellite remote sensing data from 1989 to 2011, Dongting lake water areas were extracted using the comprehensive methods during the main flood season from June to September. The water area results were compared to the water information extracted by the remote sensing data with high spatial resolution, which showed that the accuracy reached more than 90%. The frequency map of Dongting Lake during the flood season from 1989 to 2011 year was made. This map could reflect the spatial and temporal characteristics of water distribution and could be used to assess the flood risk in the Dongting Lake region. Based on the long-time water area information, the relationship of average annual runoff amount into the lake and the Dongting lake water area was researched. The results showed that, from 1989 to2011, the largest and mean maximum of water area occurred in July and August of every year. The correlation coefficient of the lake's water area and average annual runoff amount into the lake was 0.67 from 2003 to 2011. In 2003, the Three Gorges Reservoir started to operate. Dongting Lake water area's fluctuation was large before the impoundment of the Three Gorges Reservoir. But, since after 2003 years, the Dongting Lake area fluctuation reduced significantly. Furthermore, utilizing the NCEP data, the average monthly total precipitations over the lake and over the basin were calculated, respectively. The relationships of the average monthly total precipitation over the lake, monthly total precipitation of basin and the water area were studied. The average monthly total precipitation over the lake showed significant positive correlation relationship with the lake water area. The correlation coefficient was 0.68. Before the impoundment of the Three Gorges Reservoir, the correlation coefficient of the average monthly total precipitation of the basin and lake water area was 0.50 in the main flood season. But, the correlation was weakened after 2003, which may be affected by artificial regulation. We also selected the two typical years of 1996 and 1998 to analyze their difference based the average monthly total precipitation over the lake and over the basin, which showed that the difference of precipitation over the lake and over the basin may result in the big difference of water spatial distribution. These research results were valuable to the drought and flood disaster analysis.

Key words: Dongting Lake, meteorological satellite, the long-time series, water area change

中图分类号: 

  • TP79
[1] 李景刚,李纪人,黄诗峰,等. Terra/MODIS时间序列数据在湖泊水域面积动态监测中的应用研究——以洞庭湖地区为例[J].自然资源学报,2009,24(5):923-933.
[2] BARTOLUCCI L A. Field measurements of the spectral response of nature waters [J]. Photogrammetric Engineering and Remote Sensing, 1977, 43(5):595-598.
[3] RUNDQUIS D, LAWSON M, QUEEN I, et al. Relationship between the timing of summer season rainfall events and lake surface area [J]. Water Resources Bulletin, 1987, 23(3):493-508.
[4] 赁常恭.用气象卫星信息监测黑龙江春涝[J].遥感信息,1989, 3:4-7.
[5] 戴昌达,唐伶俐,陈 刚,等.从TM图像自动提取洪涝灾情的研究[J].自然灾害学报,1993,2(2):35-37.
[6] DAYA SADAR B S. Application of mathematical morphology in surface water body studies [J]. Remote Sensing,1995, 16(8): 1495-1502.
[7] 周成虎,杜云艳,骆剑承.基于知识的AVHRR影像的水体自动识别方法与模型研究[J]. 自然灾害学报, 1996, 5(3):100-108.
[8] 赵书河,冯学智,都金康.中巴资源一号卫星水体信息提取方法研究[J].南京大学学报,2003,39(1): 106-112.
[9] 肖乾广,陈维英,王 葳,等.气象卫星影像用于松花江洪水监测[J]. 遥感信息,1987,4:26-27.
[10] MCFEETERS S K. The Use of Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features [J]. International Journal of Remote Sensing, 1996, 17(7):1425-1432.
[11] SHENG Y W, SU Y F, XIAO Q G. Challenging the cloud-contamination problem in flood monitoring with NOAA/AVHRR imagery [J]. Photogrammetric Engineering and Remote Sensing, 1998, 64(3):191-198.
[12] SHENG Y, GONG P, XIAO Q. Quantitative dynamic flood monitoring with NOAA AVHRR International [J]. Journal of Remote Sensing, 2001, 22(9):1709-1724.
[13] 彭定志,徐高洪,胡彩虹.等.基于MODIS的洞庭湖面积变化对洪水位的影响[J].人民长江, 2004,35(4): 14-17.
[14] 冯钟葵,李晓辉.青海湖近20年水域变化及湖岸演变遥感监测研究[J].古地理学报,2006,8(1):131-141.
[15] 刘瑞霞,刘玉洁.近20年青海湖湖水面积变化遥感[J].湖泊科学,2008,20(1):135-138.
[16] 赵玉灵.近30年来安固里淖湖面监测与变化分析[J].地球信息科学学报,2009,11(3):312-318.
[17] 李景刚,李纪人,黄诗峰,等.近10年来洞庭湖区水面面积变化遥感监测分析[J].中国水利水电科学研究院学报,2010,8(3): 201-207.
[18] 李景保,杨 燕,许树辉.洞庭湖区1991~2000年大洪涝灾害特点与成因分析[J].湖南师范大学自然科学学报,2001,24(4): 90-94.
[19] 李景保,胡 巍,尹 辉,等.1950~2009年洞庭湖流域农业水灾演变特征及分异规律[J].自然资源学报,2011,26(9): 1496-1505.
[20] 李景保,常 疆,吕殿青,等. 三峡水库调度运行初期荆江与洞庭湖区的水文效应[J].地理学报,2009,64(11):1343-1352.
[21] 丁永建,刘时银,叶柏生,等.近50a中国寒区与旱区湖泊变化的气候因素分析[J].冰川冻土,2006,28(5):623-632.
[22] 李景刚,李纪人,黄诗峰,等.基于TRMM数据和区域综合Z指数的洞庭湖流域近10年旱涝特征分析[J].资源科学,2010.32(6):1103-1110.
[23] 田伟国,彭嘉栋,沈 军,等.基于MODIS影像序列的三峡截流前后洞庭湖面积变化序列分析[J].安徽农业科学,2012,40(16): 9141-9145.
[24] 刘可群,梁益同,黄 靖,等.基于卫星遥感的洞庭湖水体面积变化及影响因子分析[J].中国农业气象,2009,30(增2):281- 284.
[25] 雷 璇,杨一鹏,蒋卫国,等. 基于SPOT-VGT数据的洞庭湖水体面积变化分析[J]. 水资源与水工程学报,2012,23(5):19-24.
[1] 戴雪, 何征, 万荣荣, 杨桂山. 近35 a长江中游大型通江湖泊季节性水情变化规律研究[J]. 长江流域资源与环境, 2017, 26(01): 118-125.
[2] 李敏, 张灿明, 李姣, 邓学建. 基于淹水特征的分时段湿地生态系统管理——以南洞庭湖万子湖为例[J]. 长江流域资源与环境, 2016, 25(05): 769-776.
[3] 谢谦, 朱翔, 贺清云, 徐美. 洞庭湖区血吸虫病疫水人水相互作用关系及防控方案研究[J]. 长江流域资源与环境, 2016, 25(04): 655-663.
[4] 王婷, 章新平, 黎祖贤, 罗紫东, 廖梦思, 刘娜. 近52年来洞庭湖流域气象干旱的时空分布特征[J]. 长江流域资源与环境, 2016, 25(03): 514-522.
[5] 李敏, 张灿明, 李姣, 邓学建. 南洞庭湖湿地鱼类生境景观变化及其人为驱动[J]. 长江流域资源与环境, 2015, 24(12): 2069-2075.
[6] 王琦, 欧伏平, 张雷, 卢少勇. 三峡工程运行后洞庭湖水环境变化及影响分析[J]. 长江流域资源与环境, 2015, 24(11): 1843-1849.
[7] 孙葭, 章新平, 黄一民. 不同再分析降水数据在洞庭湖流域的精度评估[J]. 长江流域资源与环境, 2015, 24(11): 1850-1859.
[8] 张晓艳, 刘梅先. 洞庭湖流域高温热浪风险变化特征[J]. 长江流域资源与环境, 2015, 24(10): 1729-1735.
[9] 孙占东, 黄群, LOTZ Tom. 洞庭湖流域分布式水文模型[J]. 长江流域资源与环境, 2015, 24(08): 1299-1304.
[10] 马巍 廖文根 匡尚富 肖斯斌 李佩安. 洞庭湖钉螺扩散与水情变化规律[J]. 长江流域资源与环境, 2009, 18(3): 264-269.
[11] 钟福生,邓学建,颜亨梅,王焰新,彭波涌, 彭平波. 西洞庭湖湿地鸟类群落组成、多样性及保护对策[J]. 长江流域资源与环境, 2008, 17(3): 351-351.
[12] 王红娟,姜加虎,黄 群. 基于知识的洞庭湖湿地遥感分类方法[J]. 长江流域资源与环境, 2008, 17(3): 370-370.
[13] 王红娟,姜加虎,黄 群. 东洞庭湖湿地景观变化研究[J]. 长江流域资源与环境, 2007, 16(6): 732-732.
[14] 彭佩钦,童成立,仇少君,. 洞庭湖洲滩地年淹水天数和面积变化[J]. 长江流域资源与环境, 2007, 16(5): 685-685.
[15] 邓学建,王 斌,米小其,周 毅. 退田还湖对洞庭湖鸟类群落结构的影响[J]. 长江流域资源与环境, 2006, 15(5): 588-592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曾慧卿. 近40年气候变化对江西自然植被净第一性生产力的影响[J]. 长江流域资源与环境, 2008, 17(2): 227 .
[2] 徐祖信,叶建锋. 前置库技术在水库水源地面源污染控制中的应用[J]. 长江流域资源与环境, 2005, 14(6): 792 -795 .
[3] 程 江,何 青,王元叶,刘 红,夏小明. 长江河口细颗粒泥沙絮凝体粒径的谱分析[J]. 长江流域资源与环境, 2005, 14(4): 460 -464 .
[4] 彭 建,景 娟,吴健生,蒋依依,张 源. 乡村产业结构评价——以云南省永胜县为例[J]. 长江流域资源与环境, 2005, 14(4): 413 .
[5] 张青青,张世熔,李婷,张林,林晓利,. 基于多元数据的景观格局演变及其影响因素——以流沙河流域宜东段为例[J]. 长江流域资源与环境, 2006, 15(Sup1): 125 -130 .
[6] 周国忠,冯海霞. 浙江省旅游资源地区差异研究[J]. 长江流域资源与环境, 2006, 15(2): 157 -163 .
[7] 梁流涛, 曲福田, 王春华. 基于DEA方法的耕地利用效率分析[J]. 长江流域资源与环境, 2008, 17(2): 242 .
[8] 罗璐琴, 周敬宣, 李湘梅. 生态足迹动态预测模型构建与分析[J]. 长江流域资源与环境, 2008, 17(3): 440 .
[9] 刘德富,黄钰铃,| 王从锋,. 水工学的发展趋势——从传统水工学到生态水工学[J]. 长江流域资源与环境, 2007, 16(1): 92 -96 .
[10] 濮励杰,赵姚阳, 金平华, 王金磊, 黄贤金,. 137Cs示踪红壤丘陵区坡地土壤侵蚀的研究——以江西丰城市为例[J]. 长江流域资源与环境, 2004, 13(6): 562 -567 .