长江流域资源与环境 >> 2017, Vol. 26 >> Issue (01): 118-125.doi: 10.11870/cjlyzyyhj201701014

• 生态环境 • 上一篇    下一篇

近35 a长江中游大型通江湖泊季节性水情变化规律研究

戴雪1,2, 何征1,2, 万荣荣1, 杨桂山1   

  1. 1. 中国科学院流域地理学重点实验室, 中国科学院南京地理与湖泊研究所, 江苏 南京 210008;
    2. 中国科学院大学, 北京 100049
  • 收稿日期:2016-04-26 修回日期:2016-07-07 出版日期:2017-01-20
  • 通讯作者: 万荣荣,E-mail:rrwan@niglas.ac.cn E-mail:rrwan@niglas.ac.cn
  • 作者简介:戴雪(1988~),女,博士研究生,主要从事生态水文方面研究.E-mail:daixue1224@163.com
  • 基金资助:
    国家重点基础研究发展计划项目(2012CB417006);国家自然科学基金项目(41571107);国家自然科学基金项目(41271500)

VARIATION OF SEASONAL WATER-LEVEL FLUCTUATIONS IN RIVER-CONNECTED LAKES IN THE MIDDLE REACHES OF YANGTZE RIVER IN THE RECENT THREE DECADES

DAI Xue1,2, HE Zheng1,2, WAN Rong-rong1, YANG Gui-shan1   

  1. 1. Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-04-26 Revised:2016-07-07 Online:2017-01-20
  • Supported by:
    National Basic Research Program of China (2012CB417006);National Natural Science Foundation of China (41571107);National Natural Science Foundation of China (41271500)

摘要: 长江中游自然通江的洞庭湖和鄱阳湖,在长期的季风气候以及江湖交互作用下形成了相对稳定的涨-丰-退-枯季节性水位波动模式。近几十年来,受水利工程及气候变化的双重影响,两湖季节性水情均发生了显著改变。揭示和对比两湖季节性水位波动近年来的变化趋势及强度并分析其形成的可能原因,对于指导两湖地区的湖泊管理与实践,理解长江中游江湖关系演变现状具有重要意义。基于此,以2003年为断点(即1980~2002年与2003~2014年两时段),首先通过湖区多站点水文要素的单因素方差分析揭示两湖各自的季节性水情变化特征;然后通过两湖季节性水情变化状况的对比,分析长江中游大型通江湖泊水情变化的规律及其形成原因。得出的主要结论如下:(1)2003年后,涨水期和枯水期的两湖水情均呈偏枯趋势,且水位降幅均在由上游到中游的过程中扩大,由中游到下游的过程中减小,甚至涨水和枯水期的洞庭湖下游湖区还出现了水位的小幅抬升。(2)2003年后,丰水期和退水期的洞庭湖偏枯趋势呈现不同的空间分异,丰水期的洞庭湖水位下降程度在上、中游湖区更为剧烈,而退水期的水位下降程度在中、下游湖区更为剧烈。与此同时段的鄱阳湖偏枯趋势在丰水期和退水期均在由上游至下游的过程中增加。(3)2003年后的洞庭湖水位降幅在各个季节各个湖区均显著小于位于其下游的鄱阳湖。江湖关系对两湖及其不同湖区的作用方式和强度的差异是造成两湖季节性水情演变差异的主要原因。

关键词: 通江湖泊, 洞庭湖, 鄱阳湖, 季节性水位波动

Abstract: Due to the effect of monsoon climate and river-lake interactions, a seasonal water-level fluctuation pattern, i.e. rising seasons, flooding seasons, retreating seasons and dry seasons appearing consecutively, has been formed in the two river-connected lakes, the Dongting Lake and the Poyang Lake. In the recent three decades, dramatic changes occurred in these two lakes due to climate variation and built dams on the main stream of the Yangtze River. The Dongting Lake and the Poyang Lake are both located in the south of Yangtze River with similar climates, and probably with rather similar drainage structures. While, the Dongting Lake and the Poyang Lake are also linked by the upstream and downstream relations. Hence, the climate variations and river-lake interactions affect water regimes of those two lakes both similarly and differently. Contrasting of water regime variation of those two lakes is conducive not only to understanding river-lake interaction in middle reaches of the Yangtze River, but also to improving lake governance. In this research, taking the year 2003 as the breakpoint (There are two periods:1980-2002 and 2003-2014), comparative analyses were performed about the hydrological data of both two lakes and the multi-site in a single lake. How river-lake interactions affect the water regime variation in those two lakes was also discussed. The results showed that (1) compared to the former period, in both dry and rising seasons, the water level declined in the upstream region of each lake during the later period, while the lake water level fell even more in the middle region of each lake. Eventually, the lake water level rebounded decreases in the downstream region of each lake. 2) In both the flood and the retreating season, magnitudes of water level fluctuations in both lakes have changed considerably since 2003. For the Dongting Lake, the biggest water level decline in flooding season occurred at the upstream region and the middle region of the lake, while the biggest decline in the retreating season occurred at the middle region and the downstream region of the lake. Unlike the Dongting Lake, the declining amplitude of water level in the Poyang Lake expanded from the upstream region to the downstream region in both the flood season and the retreating season. (3) The water level drops in the Dongting Lake were significantly less than that in the Poyang Lake. Different mechanisms and intensity of river-lake interactions are mainly responsible for these disparity in variations magnitude of those two river-connected lakes in the middle reaches of the Yangtze River.

Key words: river-connected lakes, Dongting Lake, Poyang Lake, seasonal water-level fluctuations

中图分类号: 

  • TV882.9
[1] DAI X, WAN R R, YANG G S, et al. Responses of wetland vegetation in Poyang Lake, China to water-level fluctuations[J]. Hydrobiologia, 2016, 773(1):35-47.
[2] 李景保, 秦建新, 王克林, 等. 洞庭湖环境系统变化对水文情势的响应[J]. 地理学报, 2004, 59(2):239-248. [LI J B, QIN J X, WANG K L, et al. The response of environment system changes of Dongting Lake to hydrological situation[J]. Acta Geographica Sinica, 2004, 59(2):239-248.]
[3] 戴雪, 万荣荣, 杨桂山, 等. 鄱阳湖水文节律变化及其与江湖水量交换的关系[J]. 地理科学, 2014, 34(12):1487-1496. [DAI X, WAN R R, YANG G S, et al. Temporal variation of hydrological rhythm in poyang lake and the associated water exchange with the Changjiang River[J]. Scientia Geographica Sinica, 2014, 34(12):1487-1496.]
[4] DAI X, WAN R R, YANG G S. Non-stationary water-level fluctuation in China's Poyang Lake and its interactions with Yangtze River[J]. Journal of Geographical Sciences, 2015, 25(3):274-288.
[5] 赖锡军, 姜加虎, 黄群. 三峡工程蓄水对洞庭湖水情的影响格局及其作用机制[J]. 湖泊科学, 2012, 24(2):178-184. [LAI X J, JIANG J H, HUANG Q. Pattern of impoundment effects and influencing mechanism of Three Gorges Project on water regime of Lake Dongting[J]. Journal of Lake Sciences, 2012, 24(2):178-184.]
[6] LIU Y B, SONG P, PENG J, et al. Recent increased frequency of drought events in Poyang Lake Basin, China:climate change or anthropogenic effects?[C]//Hydro-climatology:Variability and Change. Melbourne, Australia:IAHS Publication, 2011:99-104.
[7] LI X H, YE X C. Spatiotemporal characteristics of dry-wet abrupt transition based on precipitation in Poyang Lake Basin, China[J]. Water, 2015, 7(5):1943-1958.
[8] 姚仕明, 卢金友. 三峡水库蓄水运用前后坝下游水沙输移特性研究[J]. 水力发电学报, 2011, 30(3):117-123. [YAO S M, LU J Y. Research on water and sediment transport characteristics downstream the Three Gorges reservoir before and after its impoundment[J]. Journal of Hydroelectric Engineering, 2011, 30(3):117-123.]
[9] ZHANG Z X, CHEN X, XU C Y, et al. Examining the influence of river-lake interaction on the drought and water resources in the Poyang Lake basin[J]. Journal of Hydrology, 2015, 522:510-521.
[10] ZHANG Q, YE X C, WERNER A D, et al. An investigation of enhanced recessions in Poyang Lake:comparison of Yangtze River and local catchment impacts[J]. Journal of Hydrology, 2014, 517:425-434.
[11] ZHANG Q, LIU Y, YANG G S, et al. Precipitation and hydrological variations and related associations with large-scale circulation in the Poyang Lake basin, China[J]. Hydrological Processes, 2011, 25(5):740-751.
[12] 李景保, 周永强, 欧朝敏, 等. 洞庭湖与长江水体交换能力演变及对三峡水库运行的响应[J]. 地理学报, 2013, 68(1):108-117. [LI J B, ZHOU Y Q, OU C M, et al. Evolution of water exchange ability between Dongting Lake and Yangtze River and its response to the operation of the Three Gorges Reservoir[J]. Acta Geographica Sinica, 2013, 68(1):108-117.]
[13] HU Q, FENG S, GUO H, et al. Interactions of the Yangtze River flow and hydrologic processes of the Poyang Lake, China[J]. Journal of Hydrology, 2007, 347(1/2):90-100.
[14] 郭华, HU Q, 张奇. 近50年来长江与鄱阳湖水文相互作用的变化[J]. 地理学报, 2011, 66(5):609-618. [GUO H, HU Q, ZHANG Q. Changes in hydrological interactions of the Yangtze River and the Poyang Lake in China during 1957-2008[J]. Acta Geographica Sinica, 2011, 66(5):609-618.]
[15] LIU Y B, WU G P, ZHAO X S. Recent declines in China's largest freshwater lake:trend or regime shift?[J]. Environmental Research Letters, 2013, 8(1):14010.
[16] HONG X J, GUO S L, XIONG L H, et al. Spatial and temporal analysis of drought using entropy-based standardized precipitation index:a case study in Poyang Lake basin, China[J]. Theoretical and Applied Climatology, 2015, 122(3/4):543-556.
[17] 原立峰, 杨桂山, 李恒鹏, 等. 近50年来鄱阳湖流域降雨多时间尺度变化规律研究[J]. 长江流域资源与环境, 2014, 23(3):434-440. [YUAN L F, YANG G S, LI H P, et al. Rainfall multiple time scale variation rule of Poyang Lake basin in the past 50 years[J]. Resources and Environment in the Yangtze Basin, 2014, 23(3):434-440.]
[18] LAI X J, SHANKMAN D, HUBER C, et al. Sand mining and increasing Poyang Lake's discharge ability:a reassessment of causes for lake decline in China[J]. Journal of Hydrology, 2014, 519:1698-1706.
[1] 李云良, 姚静, 张小琳, 张奇. 鄱阳湖水体垂向分层状况调查研究[J]. 长江流域资源与环境, 2017, 26(06): 915-924.
[2] 张小琳, 张奇, 王晓龙. 洪泛湖泊水位-流量关系的非线性特征分析[J]. 长江流域资源与环境, 2017, 26(05): 723-729.
[3] 李金前, 王吉, 刘亚军, 邹锋, 马燕天, 吴兰. 水位高程变化对湿地土壤微生物代谢功能的影响研究——以蚌湖为例[J]. 长江流域资源与环境, 2017, 26(05): 730-737.
[4] 侯立春, 林振山, 琚胜利, 赖正清, 吴连霞, 张志荣. 环鄱阳湖旅游圈旅游经济联系与区域发展策略[J]. 长江流域资源与环境, 2017, 26(04): 508-518.
[5] 齐凌艳, 黄佳聪, 高俊峰, 郭玉银. 鄱阳湖枯水水位及流速时空分布模拟[J]. 长江流域资源与环境, 2017, 26(04): 572-584.
[6] 赵志刚, 余德, 韩成云, 王凯荣. 2008~2016年鄱阳湖生态经济区生态系统服务价值的时空变化研究[J]. 长江流域资源与环境, 2017, 26(02): 198-208.
[7] 李冰, 杨桂山, 万荣荣, 刘宝贵, 戴雪, 许晨. 鄱阳湖出流水质2004~2014年变化及其对水位变化的响应:对水质监测频率的启示[J]. 长江流域资源与环境, 2017, 26(02): 289-296.
[8] 张范平, 方少文, 周祖昊, 温天福, 张梅红. 鄱阳湖水位多时间尺度动态变化特性分析[J]. 长江流域资源与环境, 2017, 26(01): 126-133.
[9] 朱婧瑄, 齐述华, 刘贵花, 王点, 熊梦雅. 2000~2013年鄱阳湖流域蒸散量时空变化[J]. 长江流域资源与环境, 2016, 25(Z1): 9-16.
[10] 汪丹, 王点, 齐述华. 鄱阳湖水位-淹水面积关系不确定性的分析[J]. 长江流域资源与环境, 2016, 25(Z1): 95-102.
[11] 李云良, 张小琳, 赵贵章, 姚静, 张奇. 鄱阳湖区地下水位动态及其与湖水侧向水力联系分析[J]. 长江流域资源与环境, 2016, 25(12): 1894-1902.
[12] 李云良, 姚静, 李梦凡, 张奇. 鄱阳湖水流运动与污染物迁移路径的粒子示踪研究[J]. 长江流域资源与环境, 2016, 25(11): 1748-1758.
[13] 戴雪, 杨桂山, 万荣荣, 李冰, 王晓龙. 鄱阳湖洲滩植被健康状态评价及其典型不健康年水文条件分析[J]. 长江流域资源与环境, 2016, 25(09): 1395-1402.
[14] 李云良, 许秀丽, 赵贵章, 姚静, 张奇. 鄱阳湖典型洲滩湿地土壤质地与水分特征参数研究[J]. 长江流域资源与环境, 2016, 25(08): 1200-1208.
[15] 夏少霞, 于秀波, 刘宇, 贾亦飞, 张广帅. 鄱阳湖湿地现状问题与未来趋势[J]. 长江流域资源与环境, 2016, 25(07): 1103-1111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李宗尧,|杨桂山. 经济快速发展地区生态环境竞争力的评价方法——以安徽沿江地区为例[J]. 长江流域资源与环境, 2008, 17(1): 124 .
[2] 季永兴. 上海多自然型河流整治实践与探索[J]. 长江流域资源与环境, 2008, 17(2): 264 .
[3] 吕东亮. 汉江水质优于长江的原因刍议[J]. 长江流域资源与环境, 2006, 15(Sup1): 102 -104 .
[4] 毛战坡,单保庆,彭文启,王洪军. 氮素在河流生态系统中的滞留研究进展[J]. 长江流域资源与环境, 2006, 15(4): 480 -484 .
[5] 彭刚华,黄良英. 长江水质评价和预测模型探讨[J]. 长江流域资源与环境, 2006, 15(Sup1): 77 -82 .
[6] 许有鹏,于瑞宏,马宗伟. 长江中下游洪水灾害成因及洪水特征模拟分析[J]. 长江流域资源与环境, 2005, 14(5): 638 -643 .
[7] 张 雷,吴映梅. 长江干流地区区域发展与国家工业化[J]. 长江流域资源与环境, 2005, 14(5): 633 -637 .
[8] 魏 伟,周 婕,许 峰. 大城市边缘区土地利用时空格局模拟——以武汉市洪山区为例[J]. 长江流域资源与环境, 2006, 15(2): 174 -179 .
[9] 陈宁波,王 辉,江洪泽. 市场经济条件下珍贵可再生资源之灭绝探析[J]. 长江流域资源与环境, 2008, 17(4): 556 .
[10] 胡雄星,韩中豪,张 进,夏 凡,王文华. 黄浦江表层沉积物中重金属污染的潜在生态风险评价[J]. 长江流域资源与环境, 2008, 17(1): 109 .