长江流域资源与环境 >> 2016, Vol. 25 >> Issue (03): 514-522.doi: 10.11870/cjlyzyyhj201603019

• 生态环境 • 上一篇    下一篇

近52年来洞庭湖流域气象干旱的时空分布特征

王婷1, 章新平1, 黎祖贤2, 罗紫东1, 廖梦思1, 刘娜1   

  1. 1. 湖南师范大学资源与环境科学学院, 湖南 长沙 410081;
    2. 湖南省气象局人工影响天气办公室, 湖南 长沙 410007
  • 收稿日期:2015-07-03 修回日期:2015-09-07 出版日期:2016-03-20
  • 作者简介:王婷(1991~),女,硕士研究生,主要从事气候变化方面的研究. E-mail: wanging817@foxmail.com
  • 基金资助:
    国家自然科学基金项目(41171035);湖南省重点学科建设项目(2011001);湖南重特大干旱机理研究项目(2015001)

TEMPORAL AND SPATIAL DISTRIBUTION CHARACTERISTICS OF METEOROLOGICAL DROUGHT FOR RECENT 52 YEARS IN DONGTING LAKE BASIN

WANG Ting1, ZHANG Xin-ping1, LI Zu-xian2, LUO Zi-dong1, LIAO Meng-si1, LIU Na1   

  1. 1. College of Resources and Environment, Hunan Normal University, Changsha 410081, China;
    2. Weather Modification Office, Hunan Metrological Bureau, Changsha 410007, China
  • Received:2015-07-03 Revised:2015-09-07 Online:2016-03-20
  • Supported by:
    National natural science foundation;the key constructiondisciplines program in Hunan province;The foundation of extreme drought mechanism research inHunan province

摘要: 基于洞庭湖流域84个气象站点1962~2013年的逐日气象资料,利用综合干旱指数(CI)对洞庭湖流域气象干旱的时间和空间特征进行分析。结果表明:在过去52 a,区域性干旱强度较强的时段以夏季、秋季、夏秋和秋冬时节为主;区域干旱强度在春季、夏季、夏秋、冬季呈上升趋势;秋冬时节和年干旱强度变化不明显;春夏时节、夏秋时节、秋冬时节和冬春时节的平均干旱强度比春、夏、秋、冬单个季节的平均干旱强度大。小波分析表明,区域干旱强度的周期以10a为主周期,5 a和22 a为次周期。近52 a来,历年干旱站次比主要集中于10%~30%之间,多表现为区域性干旱,以夏季和秋季的干旱范围较大;干旱频率高发时期主要为夏季、夏秋时节和秋季。干旱频率高发地主要以流域的南部山地和北部的洞庭湖平原为主,西北部的山地发生干旱相对较少,衡邵盆地随季节变化干旱频率易发生高低值转换。

关键词: 洞庭湖流域, 综合干旱指数(CI), 时空变化, 区域干旱强度

Abstract: In this study, based on the daily meteorological data of 84 meteorological stations in the Dongting Lake Basin from 1962 to 2013. we employed comprehensive Meteorological drought index (CI) to analyze the temporal and spatial distribution characteristics of meteorological drought in Dongting Lake Basin during recent 52 years. In the past 52 years, the result showed that the intensity of regional drought was mainly pronounced in summer, autumn, summer to autumn, autumn to winter. Among then, the regional drought intensity tended to increase in spring, summer, summer to autumn and winter. And it decreased from spring to summer, autumn, winter to spring. In addition, the regional drought intensity was unobvious in autumn to winter and annum. This pattern showed that different seasons had different trend of regional drought intensity, the seasonal variation trend was not consistent with the annual variation trend. The average drought intensity of continuous drought was heavier than that in a single season. The continuous drought contained drought from spring to summer, drought from summer to autumn, drought from autumn to winter and drought from winter to spring. Results from the Morlet wavelet analysis showed faster oscillation period of 4 to 6 years or 9 to 11 years on regional drought intensity, they alternated remarkably from drought to wetness. The period of 9 to 11 years was present throughout all studied time period, which was stable during this period. Based on the wavelet variance figure, the regional drought intensity had quasi-periodicity of 5 years, 10 years and 22 years. Among then, the 10 years was the obviously primary period, the 5 and 22 years were the secondary periods. In the past 52 years, the number of stations which had drought is relative fewer in spring. In summer, the range of drought stations ratio total stations in the basin was mostly presenting as local drought and part of the regional drought, and it showed smaller range in this season. The range of droughty stations ratio total stations was relatively higher in autumn, and it was similar with the droughty range of summer. Winter was a season that the value of droughty stations ratio total stations would be small. It was mainly represented as drought-free. In conclusion, the range of drought stations ratio total stations of four seasons in the basin was mostly floated from 10%-30%, presenting mainly as local drought and part of the regional drought. And the range of drought was generally wider in summer and autumn. High incidence of drought frequency mainly occurred in summer, summer to autumn and autumn, which located in the south mountainous area and northeast of Basin. Drought occurred less in the northwest of Basin, the frequency of drought converted from high to low in the HengShao Basin.

Key words: Dongting Lake Basin, comprehensive Meteorological drought index, temporal and spatial variations, regional drought intensity

中图分类号: 

  • P426.616
[1] 邹旭恺, 张强. 近半个世纪我国干旱变化的初步研究[J]. 应用气象报, 2008, 19(6):679-687.[ZOU X K, ZHANG Q. Preliminary studies on variations in droughts over china during past 50 years[J]. Journal of Applied Meteorological Science, 2008, 19(6):679-687.]
[2] 温克刚, 曾庆华. 中国气象灾害大典-湖南卷[M]. 北京:气象出版社, 2006.
[3] 史建国, 严昌荣, 何文清, 等. 气象干旱指数计算方法研究概述[J]. 中国农业气象. 2007, 28(增):191-195.[SHI J G,YAN C R,HE W Q,et al.Overview on calculation mwthods of meteorological drought index[J].Chinese Journal of Agrumeteoroology,2007,28(supp.):191-195.]
[4] 李茂松, 王章成, 王道龙, 等. 50年来我国自然灾害变化对粮食产量的影响[J]. 自然灾害学报, 2005, 14(2):55-60.[LI M S, WANG Z C, WANG D L, et al. Impact of natural disasters change on grain yield in China in the past 50 years[J]. Journal of Natural Disasters, 2005, 14(2):55-60.]
[5] 张强, 高歌. 我国近50年旱涝灾害时空变化及监测预警服务[J]. 科技导报, 2004, 22(7):21-24.[ZHANG Q, GAO G. The spatial and temporal features of drought and flood disasters in the past 50 years and monitoring and warning services in China[J]. Science & Technology Review, 2004, 22(7):21-24.]
[6] 刘晓云, 李栋梁, 王劲松. 1961-2009年中国区域干旱状况的时空变化特征[J]. 中国沙漠, 2012, 32(2):473-483.[LIU X Y, LI D L, WANG J S. Spatiotemporal characteristics of drought over China during 1961-2009[J]. Journal of Desert Research, 2012, 32(2):473-483.]
[7] 隋月, 黄晚华, 杨晓光, 等. 气候变化背景下中国南方地区季节性干旱特征与适应I. 降水资源演变特征[J]. 应用生态学报, 2012, 23(7):1875-1882.[SUI Y, HUANG W H, YANG X G, et al. Characteristics and adaption of seasonal drought in southern China under the background of global climate change.Ⅰ. Change characteristics of precipitation resource[J]. Chinese Journal of Applied Ecology, 2012, 23(7):1875-1882.]
[8] 文博. 四川省干旱时空分布特征研究[D]. 成都:四川师范大学硕士学位论文, 2014.[WEN B. Research on temporal and spatial distribution of drought in Sichuan Province[D]. Chengdu:Master Dissertation of Sichuan Normal University, 2004.]
[9] MISHRA A K, SINGH V P, et al. A review of drought concepts[J]. Journal of Hydrology, 2010, 391(1):202-216.
[10] PATEL N R, CHOPRA P, DADHWAL V K, et al. Analyzing spatial patterns of meteorological drought using standardized precipitation index[J]. Meteorological Applications, 2007, 14(4):329-336.
[11] VICENTE-SERRANO S M, BEGUERÍA S, LORENZO-LACRUZ J, et al. Performance of drought indices for ecological, agricultural, and hydrological applications[J]. Earth Interactions, 2012, 16(10):1-27.
[12] 马柱国, 符淙斌. 中国北方干旱区地表湿润状况的趋势分析[J]. 气象学报, 2001, 59(6):737-746.[MA Z G, FU C B. Trend of surface humid index in the arid area of northren China[J]. Acta Meteorologica Sinica, 2001, 59(6):737-746.]
[13] 张调风, 李林, 刘宝康, 等. 基于SPEI指数的近52年青海省农(牧)作物生长季干旱动态格局分析[J]. 生态学杂志, 2014, 33(8):2221-2227.[ZHANG T F, LI L, LIU B K, et al. Dynamic pattern of drought in crop (grass) growth season over Qinghai Province during last 52 years, based on standardized precipitation evapotranspiration index[J]. Chinese Journal of Ecology, 2014, 33(8):2221-2227.]
[14] 包云轩, 孟翠丽, 申双和, 等. 基于CI指数的江苏省近50年干旱的时空分布规律[J]. 地理学报, 2011, 66(5):599-608.[BAO Y X, MENG C L, SHEN S H, et al. Temporal and spatial patterns of droughts for recent 50 years in Jiangsu based on meteorological drought composite index[J]. Acta Geographica Sinica, 2011, 66(5):599-608.]
[15] 张调风, 张勃, 刘秀丽, 等. 基于CI指数的甘肃省黄土高原地区气象干旱的变化趋势分析[J]. 冰川冻土, 2012, 34(5):1076-1083.[ZHANG T F, ZHANG B, LIU X L, et al. Trend analysis of the variation of meteorological drought in Loess Plateau of Gansu Province based on comprehensive meteorological drought index[J]. Journal of Glaciology and Geocryology, 2012, 34(5):1076-1083.]
[16] 谢五三, 田红, 王胜, 等. 基于CI指数的淮河流域干旱时空特征研究[J]. 气象, 2013, 39(9):1171-1175.[XIE W S, TIAN H, WANG S, et al. Study on spatial-temporal characteristics of drought in Huaihe river basin based on CI index[J]. Meteorological Monthly, 2013, 39(9):1171-1175.]
[17] 张剑明, 黎祖贤, 章新平, 等. 湖南省区域干旱模糊评价[J]. 地理科学进展, 2009, 28(4):629-635.[ZHANG J M, LI Z X, ZHANG X P, et al. A fuzzy evaluation of the regional drought in Hunan Province[J]. Progress in Geography, 2009, 28(4):629-635.]
[18] 廖玉芳, 张剑明, 蔡荣辉, 等. 湖南主要气象灾害[M]. 长沙:湖南大学出版社, 2011.
[19] 李景保, 代勇, 尹辉, 等. 1950-2009年洞庭湖流域农业旱灾演变特征及趋势预测[J]. 冰川冻土, 2011, 33(6):1391-1398.[LI J B, DAI Y, YIN H, et al. Agricultural drought in Dongting Lake Basin in recent 60 years:Evolution characteristics and trend prediction[J]. Journal of Glaciology and Geocryology, 2011, 33(6):1391-1398.]
[20] 李姣. 洞庭湖湿地生态系统价值评估[M]. 长沙:湖南师范大学出版社, 2007.
[21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 20481-2006气象干旱等级[S]. 北京:中国标准出版社, 2006.
[22] 吴哲红, 詹沛刚, 陈贞宏, 等. 基于CI指数和K指数的近40a贵州安顺区域干旱演变特征[J]. 冰川冻土, 2013, 35(4):1044-1055.[WU Z H, ZHAN P G, ZHEN Z H, et al. The nearly 40-year drought evolution characteristics of Anshun municipality assessed by CI and K drought indexes[J]. Journal of Glaciology and Geocryology, 2013, 35(4):1044-1055.]
[1] 顾铮鸣, 金晓斌, 沈春竹, 金志丰, 周寅康. 近15a江苏省水源涵养功能时空变化与影响因素探析[J]. 长江流域资源与环境, 2018, 27(11): 2453-2462.
[2] 刘金科, 韩贵琳, 阳昆桦, 柳满. 九龙江流域河水溶解态碳的时空变化[J]. 长江流域资源与环境, 2018, 27(11): 2578-2587.
[3] 王水霞, 殷淑燕, 赵芮芮, 周亚利. 秦岭南部地区农业气候资源的变化及其对油菜的影响[J]. 长江流域资源与环境, 2017, 26(06): 882-893.
[4] 刘俸霞, 王艳君, 赵晶, 陈雪, 姜彤. 全球升温1.5℃与2.0℃情景下长江中下游地区极端降水的变化特征[J]. 长江流域资源与环境, 2017, 26(05): 778-788.
[5] 刘静, 殷淑燕. 1960~2014年秦岭南北无霜期时空变化特征及对比分析[J]. 长江流域资源与环境, 2017, 26(04): 615-623.
[6] 卢燕宇, 王胜, 田红, 邓汗青, 何冬燕. 近50年安徽省气候生产潜力演变及粮食安全气候承载力评估[J]. 长江流域资源与环境, 2017, 26(03): 428-435.
[7] 杨超杰, 贺斌, 段伟利, 李冰, 陈雯, 杨桂山. 太湖典型丘陵水源地水质时空变化及影响因素分析——以平桥河流域为例[J]. 长江流域资源与环境, 2017, 26(02): 273-281.
[8] 赵登忠, 肖潇, 汪朝辉, 谭德宝, 陈永柏. 水布垭水库水体碳时空变化特征及其影响因素分析[J]. 长江流域资源与环境, 2017, 26(02): 304-313.
[9] 易凤佳, 李仁东, 常变蓉, 施媛媛, 邱娟. 2000~2010年汉江流域湿地动态变化及其空间趋向性[J]. 长江流域资源与环境, 2016, 25(09): 1412-1420.
[10] 何华春, 周汝佳. 基于景观格局的盐城海岸带土地利用时空变化分析[J]. 长江流域资源与环境, 2016, 25(08): 1191-1199.
[11] 李军, 王兆礼, 黄泽勤, 钟睿达, 卓圣峰, 陈希贤. 基于SPEI的西南农业区气象干旱时空演变特征[J]. 长江流域资源与环境, 2016, 25(07): 1142-1149.
[12] 李琪, 苏欢, 史雨涵, 王连喜, 吴东丽. 1961~2010年江浙沪地区夏季高温热浪时空变化特征[J]. 长江流域资源与环境, 2016, 25(03): 506-513.
[13] 赵筱青, 顾泽贤, 高翔宇. 人工园林大面积种植区土地利用/覆被变化对生态系统服务价值影响[J]. 长江流域资源与环境, 2016, 25(01): 88-97.
[14] 孙葭, 章新平, 黄一民. 不同再分析降水数据在洞庭湖流域的精度评估[J]. 长江流域资源与环境, 2015, 24(11): 1850-1859.
[15] 郭晶, 关华德, 章新平. 1982~2010年洞庭湖流域植被指数的变化及其与气候因子的相关分析[J]. 长江流域资源与环境, 2015, 24(08): 1305-1314.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[2] 龙开胜, 陈利根, 李明艳. 工业化、城市化对耕地数量变化影响差异分析[J]. 长江流域资源与环境, 2008, 17(4): 579 .
[3] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[4] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[5] 赵 媛,郝丽莎. 江苏省电力工业空间结构优化研究[J]. 长江流域资源与环境, 2006, 15(3): 292 -297 .
[6] 张 燕,彭补拙,窦贻俭,金 峰,杨 浩. 水质约束条件下确定土壤允许流失量的方法[J]. 长江流域资源与环境, 2005, 14(1): 109 -113 .
[7] 李成范,刘岚, 周廷刚,张力, 吴忠芳. 基于定量遥感技术的重庆市热岛效应[J]. 长江流域资源与环境, 2009, 18(1): 60 .
[8] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[9] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[10] 陈 进,黄 薇. 梯级水库对长江水沙过程影响初探[J]. 长江流域资源与环境, 2005, 14(6): 786 -791 .