长江流域资源与环境 >> 2015, Vol. 24 >> Issue (12): 2135-2141.doi: 10.11870/cjlyzyyhj201512018

• 生态环境 • 上一篇    下一篇

云南不同量级降雨下的降雨侵蚀力特征分析

赵平伟, 郭萍, 李成武, 李立印, 张俊凯, 李屏, 邓辉敏   

  1. 云南省临沧市气象局, 云南 临沧 677099
  • 收稿日期:2015-03-16 修回日期:2015-06-30 出版日期:2015-12-20
  • 作者简介:赵平伟(1983~),男,工程师,主要研究方向为气象环境.E-mail:7203956@qq.com
  • 基金资助:
    云南省气象局预报员专项项目(YB201215);云南省临沧市气象局短平快科研项目

CHARACTERISTIC ANALYSIS OF RAINFALL EROSIVITY AT EACH LEVEL IN YUNNAN PROVINCE

ZHAO Ping-wei, GUO Ping, LI Cheng-wu, LI Li-yin, ZHANG Jun-kai, LI Ping, DENG Hui-min   

  1. Lincang Meteorological Bureauof Yunnan Province, Linchang 677099, China
  • Received:2015-03-16 Revised:2015-06-30 Online:2015-12-20

摘要: 为研究云南省及5个子区域年降雨侵蚀力和各量级降雨侵蚀力的时空变化特征,基于云南120个站点近43 a逐日降水资料,利用Man-Kendall趋势检验、Morlet连续复小波变换分析等方法进行系统分析。结果表明:各区域大雨侵蚀力在年降雨侵蚀力中起主导作用;年内各月降雨侵蚀力滇西北基本以大雨侵蚀力为主,其余区域干季以中雨侵蚀力为主,雨季以大雨侵蚀力为主;各量级降雨侵蚀力表现出降雨量级越大,季节性越强,集中程度越高的特征;各区域中雨侵蚀力相对变化呈减少趋势,其余量级降雨侵蚀力变化趋势以减居多;暴雨侵蚀力相对变化程度最强,大雨和中雨侵蚀力相对较缓;滇西北年降雨侵蚀力、大雨和中雨侵蚀力以9 a左右时间尺度为主震荡周期,其余区域主震荡周期多为18~21 a左右,暴雨侵蚀力主震荡周期在各区域存在一定差异。

关键词: 云南省, 不同量级降雨, 降雨侵蚀力, 小波分析

Abstract: Soil erosion has become a global ecological and environmental problem. Soil erosion not only lead to the destruction of land resources and reduced crop yields,but also cause water pollution and reservoir sedimentation,and increase flood risks. Therefore,the evaluation of regional soil erosion risk by analyzing the spatial and temporal variation of rainfall erosivity is of both scientific and practical significances. In order to study the spatial and temporal variations of annual rainfall erosivity and rainfall erosivity at each level in Yunnan province and its five sub-regions, this study used the data of daily rainfalls for nearly 43a from 120 observation stations in Yunnan province and made the systematic analysis through Man-Kendall trend test,Morlet continue wavelet transform and other approaches. The results indicated that: the annual mean rainfall erosivity is 4415.6 MJ·mm/(hm2·h·a), the annual mean precipitation is 1081.6 mm and the average precipitation day is 150.5 d. The erosivity of heavy rain played the leading role in regulating the annual rainfall erosivity,65.4-71.4% of the annual rainfall erosivity was generated from the rainfall erosivity of heavy rain or at a higher level that accounted for 5.3-8.5% of the annual precipitation days. 4.2-6.9% of erosive precipitation days was generated from the rainfall erosivity of heavy rain that accounted for 38-43.9% of the annual rainfall erosivity. The spatial distribution of average rainfall erosivity is basically consistent with that of average precipitation. The spatial distribution of average rainfall erosivity and precipitation is significantly different from that of average precipitation days. The diversity of spatial distribution of rainfall erosivity at different levels increased with the precipitation levels. The spatial distribution of rainfall erosivity at the same level is highly related with that of precipitation. Tn the Northwest Yunnan areas,the erosivity of heavy rain played the leading role for most of the months. In the remaining areas,the rainfall erosivity of moderate rain played the leading role in the dry season while the erosivity of heavy rain played the leading role in the rainy season. For the rainfall erosivity at each level, higher rainfall level is characterized by greater seasonal variation and concentration . In each region,the rainfall erosivity of moderate rain was relatively reduced while the rainfall erosivity at other levels was predominately reduced. The rainfall erosivity of rainstorm was relatively changed to a greatest extent while the rainfall erosivity of heavy rain and moderate rain was changed at a relatively slow rate. In each region,the annual rainfall erosivity and rainfall erosivity at each level generally has 3-4 fluctuation periods,the major oscillation period was measured by 9a in terms of the annual rainfall erosivity,the erosivity of heavy rain and the erosivity of moderate rain in the Northwest Yunnan areas. The major oscillation period was measured from 18a to 21a in the remaining areas. In terms of the rainfall erosivity of heavy rain,the major oscillation periods were largely distinguished in each region.

Key words: Yunnan province, different magnitude of rainfall, rainfall erosivity, wavelet analysis

中图分类号: 

  • S157.1
[1] 段 旭,陶 云,段长春.云南省细网格气候区划及气候代表站选取[J].大气科学学报,2011,34(3):336-342.
[2] 彭贵芬,刘 瑜.云南各量级雨日的气候特征及变化[J].高原气象,2009,28(1):214-219.
[3] 王学峰,郑小波,黄 玮,等.近47年云贵高原汛期强降水和极端降水变化特征[J].长江流域资源与环境,2010,19(11):1350-1355.
[4] SAUERBORN P, KLEIN D A, BOTSCHEK J, et al. Future rainfall erosivity derived from large-scale climate models methods and scenarios for a humid region[J]. Geoderma, 1999, 93(3/4): 269-276.
[5] 王万中,焦菊英,郝小品,等.中国降雨侵蚀力R值的计算与分布(Ⅱ)[J].土壤侵蚀与水土保持学报,1996,2(1):29-39.
[6] 杨子生.滇东北山区坡耕地降雨侵蚀力研究[J].地理科学,1999,19(3):265-270.
[7] 史东梅,江 东,卢喜平,等.重庆涪陵区降雨侵蚀力时间分布特征[J].农业工程学报,2008,24(9):16-21.
[8] 许月卿,周巧富,李双成.贵州省降雨侵蚀力时空分布规律分析[J].水土保持通报,2005,25(4):11-14.
[9] 吴昌广,林德生,肖文发,等.三峡库区降雨侵蚀力时空分布特征[J].应用生态学报,2011,22(1):151-158.
[10] 何云玲.漫湾电站库区降雨侵蚀力时空变化[J].长江流域资源与环境,2009,18(1):66-71.
[11] 刘斌涛,陶和平,宋春风,等.我国西南山区降雨侵蚀力时空变化趋势研究[J].地球科学进展,2012,27(5):499-508.
[12] 刘春丽,杨勤科,谢红霞.延河流域降雨侵蚀力时空分布特征[J].环境科学,2010,31(4):850-857.
[13] 马 良,姜广辉,左长清,等.江西省50余年来降雨侵蚀力变化的时空分布特征[J].农业工程学报,2009,25(10):61-67.
[14] 缪驰远,徐 霞,魏 欣,等.重庆市主城区降雨侵蚀力特征分析 [J].资源科学,2007,29(4):54-60.
[15] 张家其,龚 箭,吴宜进.基于日降雨数据的湖北省降雨侵蚀力初步分析[J].长江流域资源与环境,2014,23(2):274-280.
[16] 刘 瑜,赵尔旭,黄 玮,等.云南近46年降水与气温变化趋势的特征分析[J].灾害学,2010,25(1):39-44.
[17] 章文波,付金生.不同类型雨量资料估算降雨侵蚀力[J].资源科学,2003,25(1):36-41.
[18] 章文波,谢 云,刘宝元.利用日雨量计算降雨侵蚀力的方法研究[J].地理科学,2002,22(6):705-711.
[19] 魏凤英.现代气候统计诊断与预测技术(第二版)[M].北京:气象出版社,2007.
[20] 彭思岭.气象要素时空插值方法研究[D].长沙:中南大学,2010.
[21] 施 能.气象科研与预报中的多元分析方法[M].北京:气象出版社,2002.
[22] 许美玲,段 旭,杞明辉,等.云南省天气预报员手册[M],北京:气象出版社,2011.
[1] 张钊, 李占海, 张国安, 王智罡, 姚俊. 长江口南槽中段枯季水沙输运特征研究[J]. 长江流域资源与环境, 2016, 25(12): 1832-1841.
[2] 李云良, 张小琳, 赵贵章, 姚静, 张奇. 鄱阳湖区地下水位动态及其与湖水侧向水力联系分析[J]. 长江流域资源与环境, 2016, 25(12): 1894-1902.
[3] 彭俊翔, 伍永年, 胡维平, 邓建才. 长荡湖近61a降水量演化特征[J]. 长江流域资源与环境, 2016, 25(02): 292-299.
[4] 黄小燕, 韦杰. 长江上游流域降雨侵蚀力变化对河流输沙量的影响[J]. 长江流域资源与环境, 2015, 24(09): 1606-1612.
[5] 刘健, 张奇, 许崇育, 翟建青, 靳晓莉. 近50年鄱阳湖流域实际蒸发量的变化及影响因素[J]. 长江流域资源与环境, 2010, 19(2): 139-.
[6] 朱明勇, 党海山, 谭淑端, 陈正洪, 张全发. 湖北丹江口水库库区降雨侵蚀力特征[J]. 长江流域资源与环境, 2009, 18(9): 837-.
[7] 罗 艳, 杨树华, 徐淑升. 云南省楚雄州生态功能区划研究[J]. 长江流域资源与环境, 2009, 18(6): 574-.
[8] 何云玲. 漫湾电站库区降雨侵蚀力时空变化[J]. 长江流域资源与环境, 2009, 18(1): 66-.
[9] 彭 建,景 娟,吴健生,蒋依依,张 源. 乡村产业结构评价——以云南省永胜县为例[J]. 长江流域资源与环境, 2005, 14(4): 413-413.
[10] 刘会玉, 林振山, 张明阳. 近50年江苏省粮食产量变化的小波分析[J]. 长江流域资源与环境, 2004, 13(5): 460-464.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[5] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[9] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .