长江流域资源与环境 >> 2016, Vol. 25 >> Issue (01): 120-130.doi: 10.11870/cjlyzyyhj201601015

• 自然资源 • 上一篇    下一篇

长江上游大型水库群对宜昌站水文情势影响分析

段唯鑫1,2, 郭生练1, 王俊2   

  1. 1. 武汉大学水资源与水电工程科学国家重点实验室, 湖北武汉 430072;
    2. 长江水利委员会水文局, 湖北武汉 430010
  • 收稿日期:2015-04-22 修回日期:2015-06-10 出版日期:2016-01-20
  • 作者简介:段唯鑫(1980~),男,高级工程师,博士研究生,主要从事水文预报及水库调度方面研究.E-mail:duanwx@cjh.com.cn
  • 基金资助:
    水利部公益性行业科研专项"人类活动对长江口水资源供需关系的影响" (201201066).[Foundation Item:Nonprofit Scientific ResearthPrgram of Ministiy of Water Resources of China, No. 201201066]

IMPACT OF UPPER YANGTZE RIVER LARGE-SCALE CASCADE RESERVOIRS ON FLOW REGIME AT YICHANG STATION

DUAN Wei-xin1,2, GUO Sheng-lian1, Wang Jun2   

  1. 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, China;
    2. Bureau of Hydrology, Changjiang Water Resources Commission, Wuhan 430010, China
  • Received:2015-04-22 Revised:2015-06-10 Online:2016-01-20

摘要: 近年来,长江上游已建成一批大型水库,其运行调度必然会对下游的径流产生影响。水文变化指标法(IHA)和水文变化幅度法(RVA)是以水流的量、时间、频率、延时和变化率5种基本特征为基础,对建坝前后的河道水文情势变化进行定量分析的方法。根据长江流域大型水库群建设的实际情况,利用Mann-Kendall秩次相关检验法划分了宜昌站建库前后的流量序列,用来评估长江上游大型水库群对宜昌站水文情势的改变情况。M-K相关检验发现,宜昌站的年最小流量已经在2000年发生了显著性地变化; IHA和RVA分析成果表明,宜昌站的水文情势已经发生了中等程度的改变,主要是与小流量相关的一些因子,如1~3月平均流量、最小流量六个因子、低脉冲发生次数及持续时间等;随着以三峡水库为核心的上游大型水库群建成并投入运行,未来长江下游河道径流还将发生进一步的改变。

关键词: 水库群, 水文情势, 水文变化指标法, 水文变化幅度法, 长江, 宜昌站

Abstract: A large number of reservoirs have been built in the upper reach of the Yangtze River in recent years, whose operations would inevitably produce certain effects on natural runoff. The indicators of hydrologic alteration (IHA) method and range of variability approach (RVA), which were based on five essential characteristics, i.e. magnitude, time, frequency, retardation and rates of change, were both applicable to quantitatively analyze the variation of hydrologic regime before and after the dams beconstruction. Based on the larger reservoir group in the upper Yangtze River, the flow series were divided into pre- and post-dam construction by Mann-Kendall (MK) rank correlation method. Then the impact of the upper Yangtze River reservoir operations on hydrologic regime at Yichang station was assessed. The results of M-K test revealed that the annual minimum discharge has been significantly changed since 2000. The IHA and RVA results showed that the hydrologic regime at Yichang station has been moderately changed after the construction and operation of upper Yangtze River cascade reservoir system, in which the Three Gorges Reservoir plays a key role. This study further demonstrates that the changes are mainly reflected on the factors related with the low flow such as mean month discharge between January and March, minimum discharges, frequency and duration of low pulse and so on, and that more significant human-induced hydrological alterations are expected in the future in the Yangtze River.

Key words: reservoirs, flow regime, indicators of hydrologic alteration, range of variability approach, Yangtze River, Yichang station

中图分类号: 

  • P468
[1] 《中国河湖大典》编纂委员会. 中国河湖大典(长江卷)[M]. 北京:中国水利水电出版社, 2010:2.
[2] 水利部长江水利委员会. 长江流域综合规划(2012-2030)[R].武汉:水利部长江水利委员会, 2012.
[3] RICHTER B D, BAUMGARTNER J V, POWELL J, et al. A method for assessing hydrologic alteration within ecosystems[J]. Conservation Biology, 1996, 10(4):1163-1174.
[4] RICHTER B D, BAUMGARTNER J V, WIGINGTON R, et al. How much water does a river need?[J]. Freshwater Biology, 1997, 37(1):231-249.
[5] RICHTER B D, BAUMGARTNER J V, BRAUN D P, et al. A spatial assessment of hydrologic alteration within a river network[J]. Regulated Rivers:Research & Management, 1998, 14(4):329-340.
[6] MAINGI J K, MARSH S E. Quantifying hydrologic impacts following dam construction along the Tana River, Kenya[J]. Journal of Arid Environments, 2002, 50(1):53-79.
[7] BLACK A R, ROWAN J S, DUCK R W, et al. DHRAM:a method for classifying river flow regime alterations for the EC Water Framework Directive[J]. Aquatic Conservation:Marine and Freshwater Ecosystems, 2005, 15(5):427-446.
[8] 李翀, 廖文根, 彭静, 等. 宜昌站1900~2004年生态水文特征变化[J]. 长江流域资源环境, 2007, 16(1):76-80.[LI C, LIAO W G, PENG J, et al. Assessment of eco-hydrological alternation (1900~2004) in Yichang Gauge of the Yangtze River[J]. Resources and Environment in the Yangtze Basin, 2007, 16(1):76-80.]
[9] YANG T, ZHANG Q, CHEN Y D, et al. A spatial assessment of hydrologic alteration caused by dam construction in the middle and lower Yellow River, China[J]. Hydrological Processes, 2008, 22(18):3829-3843.
[10] HU W W, WANG G X, DENG W, et al. The influence of dams on ecohydrological conditions in the Huaihe River basin, China[J]. Ecological Engineering, 2008, 33(3/4):233-241.
[11] GAO B, YANG D W, ZHAO T T G, et al. Changes in the eco-flow metrics of the upper Yangtze River from 1961 to 2008[J]. Journal of Hydrology, 2012, 448-449:30-38.
[12] ZHANG Q, XIAO M Z, LIU C L, et al. Reservoir-induced hydrological alterations and environmental flow variation in the East River, the Pearl River basin, China[J]. Stochastic Environmental Research and Risk Assessment, 2014, 28(8):2119-2131.
[13] 王俊娜, 李翀, 廖文根, 等. 三峡-葛洲坝梯级水库调度对坝下河流的生态水文影响[J]. 水力发电学报, 2011, 30(2):84-90, 95.[WANG J N, LI C, LIAO W G, et al. Impacts of the regulation of Three Gorges-Gezhouba cascaded reservoirs on downstream eco-hydrology[J]. Journal of Hydroelectric Engineering, 2011, 30(2):84-90, 95.]
[14] 黎云云, 畅建霞, 涂欢, 等. 黄河干流控制性梯级水库联合运行对下游水文情势的影响[J]. 资源科学, 2014, 36(6):1183-1190.[LI Y Y, CHANG J X, TU H, et al. Impact of controlling cascade reservoir joint operation on hydrologic regimes in the lower Yellow River[J]. Resources Science, 2014, 36(6):1183-1190.]
[15] 长江水利委员会. 三峡工程水文研究[M]. 武汉:湖北科学技术出版社, 1997:30.
[16] 长江水利委员会水文局. 1998年长江洪水及水文监测预报[M]. 北京:中国水利水电出版社, 2000:41.
[17] 王渺林. 长江上游流域径流变化[J]. 水土保持研究, 2007, 14(5):115-117.[WANG M L. Runoff changes in the upper reaches of the Yangtze River[J]. Research of Soil and Water Conservation, 2007, 14(5):115-117.]
[18] 赵文焕, 高袁. 金沙江流域径流年代际变化特性分析[J]. 人民长江, 2011, 42(6):98-100.[ZHAO W H, GAO Y. Analysis on annual and decadal runoff variation characteristics of Jinsha River Basin[J]. Yangtze River, 2011, 42(6):98-100.]
[19] SHIAU J T, WU F C. Compromise programming methodology for determining instream flow under multiobjective water allocation criteria[J]. JAWRA Journal of the American Water Resources Association, 2006, 42(5):1179-1191.
[20] SHIAU J T, WU F C. Pareto-optimal solutions for environmental flow schemes incorporating the intra-annual and interannual variability of the natural flow regime[J]. Water Resources Research, 2007, 43(6):W06433.
[1] 汪聪聪, 王益澄, 马仁锋, 王静敏. 经济集聚对雾霾污染影响的空间计量研究——以长三角洲地区为例[J]. 长江流域资源与环境, 2019, 28(01): 1-11.
[2] 刘云强, 权 泉, 朱佳玲, 王 芳. 绿色技术创新、产业集聚与生态效率——以长江经济带城市群为例[J]. 长江流域资源与环境, 2018, 27(11): 2395-2406.
[3] 王丰龙, 曾刚, 叶琴, 陈弘挺. 基于创新合作联系的城市网络格局分析——以长江经济带为例[J]. 长江流域资源与环境, 2017, 26(06): 797-805.
[4] 程建, 程久苗, 吴九兴, 徐玉婷. 2000~2010年长江流域土地利用变化与生态系统服务功能变化[J]. 长江流域资源与环境, 2017, 26(06): 894-901.
[5] 姜磊, 周海峰, 柏玲. 长江中游城市群经济-城市-社会-环境耦合度空间差异分析[J]. 长江流域资源与环境, 2017, 26(05): 649-656.
[6] 周毅, 吴华武, 贺斌, 李静, 段伟利, 王建锋, 童世贤. 长江水δ18O和δD时空变化特征及其影响因素分析[J]. 长江流域资源与环境, 2017, 26(05): 678-686.
[7] 姚振兴, 陈庆强, 杨钦川. 近60年来崇明岛东部淤涨速率初探[J]. 长江流域资源与环境, 2017, 26(05): 698-705.
[8] 刘俸霞, 王艳君, 赵晶, 陈雪, 姜彤. 全球升温1.5℃与2.0℃情景下长江中下游地区极端降水的变化特征[J]. 长江流域资源与环境, 2017, 26(05): 778-788.
[9] 梅琳, 黄柏石, 敖荣军, 张涛. 长江中游城市群城市职能结构演变及其动力因子研究[J]. 长江流域资源与环境, 2017, 26(04): 481-489.
[10] 武晓静, 杜德斌, 肖刚, 管明明. 长江经济带城市创新能力差异的时空格局演变[J]. 长江流域资源与环境, 2017, 26(04): 490-499.
[11] 周志高, 林爱文, 王伦澈. 长江中游城市群太阳辐射长期变化特征及其与气象要素的关系研究[J]. 长江流域资源与环境, 2017, 26(04): 563-571.
[12] 成定平, 淦苏美. 长江经济带高技术产业投入产出效率分析[J]. 长江流域资源与环境, 2017, 26(03): 325-332.
[13] 潘欣, 尹义星, 王小军. 1960~2010年长江流域极端降水的时空演变及未来趋势[J]. 长江流域资源与环境, 2017, 26(03): 436-444.
[14] 布乃顺, 胡悦, 杨骁, 张雪, 王俭, 李博, 方长明, 宋有涛. 互花米草入侵对长江河口湿地土壤理化性质的影响[J]. 长江流域资源与环境, 2017, 26(01): 100-109.
[15] 叶潇潇, 赵一飞. 基于聚类分析的长江三角洲港口群可持续发展水平评价[J]. 长江流域资源与环境, 2016, 25(Z1): 17-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘 健,陈 星,彭恩志,周学东. 气候变化对江苏省城市系统用电量变化趋势的影响[J]. 长江流域资源与环境, 2005, 14(5): 546 -550 .
[2] 于国荣,夏自强,叶辉,王桂华,吴 瑶. 大坝下游河段的河流生态径流调控研究[J]. 长江流域资源与环境, 2008, 17(4): 606 .
[3] 张 静,汪诚信,白呼群,苏崇鳌,鄂启顺,武桂珍,黄玉英. 三峡库区虫媒和自然疫源性疾病分析[J]. 长江流域资源与环境, 2004, 13(2): 145 -148 .
[4] 谢 辉,张 雷,姜 巍,程晓凌. 21世纪初华中地区发展的资源环境基础[J]. 长江流域资源与环境, 2006, 15(1): 1 -5 .
[5] 吴佳鹏 陈凯麒. 基于灰色模糊理论的流域水电规划环境影响综合评价[J]. 长江流域资源与环境, 2009, 18(3): 281 -285 .
[6] 陈群元 宋玉祥 喻定权. null[J]. 长江流域资源与环境, 2009, 18(4): 301 .
[7] 张永永, 黄强, 桑华. 商洛市水资源供需分析及合理利用对策[J]. 长江流域资源与环境, 2009, 18(7): 630 .
[8] 席酉民, 刘静静, 沈力. 国外流域管理的成功经验对雅砻江流域管理的启示[J]. 长江流域资源与环境, 2009, 18(7): 635 .
[9] 但尚铭, 安海锋, 但玻, 许辉熙, 杨玲, 陈刚毅. 基于AVHRR和DEM的重庆城市热岛效应分析[J]. 长江流域资源与环境, 2009, 18(7): 680 .
[10] 方国华, 夏春凤, 于凤存. 水利枢纽施工干扰区生态系统综合评价[J]. 长江流域资源与环境, 2009, 18(12): 1193 .