长江流域资源与环境 >> 2016, Vol. 25 >> Issue (02): 284-291.doi: 10.11870/cjyyzyyhj201602014

• 生态环境 • 上一篇    下一篇

长江口海域表层沉积物环境质量的综合评价

赵敏1, 张丽旭2   

  1. 1. 上海师范大学城市生态与环境研究中心, 上海 200234;
    2. 国家海洋局东海环境调查勘察中心, 上海 200137
  • 收稿日期:2015-05-28 修回日期:2015-09-28 出版日期:2016-02-20
  • 作者简介:赵敏(1973~),女,副教授,主要从事城市生态与环境方面的研究.E-mail:zhaomin@shnu.edu.cn
  • 基金资助:
    国家自然科学基金青年基金项目(31100354)

THE COMPREHENSIVE ASSESSING OF SURFACE SEDIMENTS ENVIRONMENTAL QUALITY IN CHANGJIANG ESTUARY INSHORE

ZHAO Min1, ZHANG Li-xu2   

  1. 1. Urban Ecology and Environment Center, Shanghai Normal University, Shanghai 200234, China;
    2. East China Sea Marine Engineering Survey and Design Institute, East China Sea Branch, SOA, Shanghai 200137, China
  • Received:2015-05-28 Revised:2015-09-28 Online:2016-02-20
  • Supported by:
    Youth Fund Program of National Natural Science Foundation, (31100354)

摘要: 利用2004年和2009年夏季航次长江口海域表层沉积物的监测统计结果,以加权平均环境质量综合指数法为基础,以参评因子动态分类排序法确定权重,以《海洋沉积物质量》(GB18668-2002)作为评价标准,构建新的海洋沉积物质量综合评价模式,对长江口海域表层沉积物中的主要污染因子进行了分类判别,综合评价了长江口海域表层沉积物质量状况。结果表明,长江口海域表层沉积物中硫化物、石油类、汞为常态因子,铅、镉、砷、多氯联苯和滴滴涕为关键因子,铜和有机碳在个别站位已成为预警因子;沉积物环境质量总体良好,综合评价指数介于0.267~0.636之间,均属于第一类海洋沉积物质量;个别站位铜、有机碳含量偏高,存在超标现象。此外,本文通过构建的海洋沉积物质量综合评模式计算过程简单、权重确定不受人为主观因素的影响、反映沉积物综合质量的时空变化特征比较客观,具有普适性。

关键词: 长江口, 表层沉积物质量, 参评因子动态排序, 综合评价

Abstract: By using of the monitoring-statistical results of surface sediments quality of Changjiang Estuary inshore in summer of 2004 and 2009, on the base of the weighted average environmental quality comprehensive index method, to determine the weight by applying improved analytical hierarchy process method, with the marine sediment quality as evaluation criterion, the new comprehensive evaluation model of marine sediment quality was constructed.The classifying of main pollution factors in surface sediments of Changjiang Estuary inshore was performed, and a comprehensive assessment was given on surface sediments environmental quality with using of the new evaluation model constructed. The assessing results showed that Sulfides, Oil, and Hg were Normal Factor, Pb, Cd, As, PCBS, and DDTS were Pivotal Factor, Cu and TOC were Warning Factor in surface sediments of Changjiang Estuary inshore. On the whole, the surface sediment environmental quality was generally good, the comprehensive evaluation index was between 0.267 to 0.636, the comprehensive environmental quality of all the surface sediment samples in Changjiang estuary was at Ⅰgrade marine sediments quality level;the content of Cu and TOC in individual stations was exceededⅠgrade marine sediments quality level. Moreover, with a simple calculation progress of the constructed marine sediment quality comprehensive assessing model simple, and the factors weights in this model affected by artificial subjective factors, it is more objective to reflect spatial variation characteristics about marine sediment comprehensive environmental quality, and this comprehensive assessing model is with being universal.

Key words: the Yangtze River Estuary, surface sediment quality, improved analytical hierarchy process method, comprehensive assessment

中图分类号: 

  • X820.2
[1] MÜLLER G. Index of geo-accumulation in sediments of the Rhine River[J]. GeoJournal, 1969, 2(3):108-118.
[2] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980, 14(8):975-1001.
[3] CHERNOFF H. The use of faces to represent points in K-dimensional space graphically[J]. Journal of the American Statistical Association, 1973, 68(342):361-368.
[4] 贾振邦, 霍文毅, 赵智杰, 等. 应用次生相富集系数评价柴河沉积物重金属污染[J]. 北京大学学报(自然科学版), 2000, 36(6):808-812.[JIA Z B, HUO W Y, ZHAO Z J, et al. Secondary phase enrichment factor for evaluation of heavy metal pollution of sediment in the Chai River[J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 2000, 36(6):808-812.]
[5] 左平, 汪亚平, 闵凤阳, 等. 深圳湾近岸海域表层沉积物中重金属污染评价[J]. 海洋环境科学, 2009, 28(6):648-651.[ZUO P, WANG Y P, MIN F Y, et al. Assessment on heavy metals pollution in coastal surface sediments of Shenzhen Bay[J]. Marine Environmental Science, 2009, 28(6):648-651.]
[6] 张丽旭, 蒋晓山, 赵敏, 等. 长江口洋山海域表层沉积物重金属的富积及其潜在生态风险评价[J]. 长江流域资源与环境, 2007, 16(3):351-356.[ZHANG L X, JIANG X S, ZHAO M, et al. Accumulation of heavy metals in surface sediments from the sea region of Yangshan in the Yangtze Estuary with assessment of their potential ecological risk[J]. Resources and Environment in the Yangtze Basin, 2007, 16(3):351-356.]
[7] 张丽旭, 蒋晓山, 赵敏, 等. 长江口海域表层沉积物污染及其潜在生态风险评价[J]. 生态环境, 2007, 16(2):389-393.[ZHANG L X, JIANG X S, ZHAO M, et al. Pollution of surface sediments and its assessment of potential ecological risk in the Yangtze Estuary[J]. Ecology and Environment, 2007, 16(2):389-393.]
[8] 刘文新, 栾兆坤, 汤鸿霄. 应用多变量脸谱图进行河流与湖泊表层沉积物重金属污染状况的综合对比研究[J]. 环境化学, 1997, 16(1):23-29.[LIU W X, LUAN Z K, TANG H X. Comparative assessment of heavy metal pollution in surface sediment of river and lake with multivariate face graph[J]. Environmental Chemistry, 1997, 16(1):23-29.]
[9] 戴秀丽, 孙成. 太湖沉积物中重金属污染状况及分布特征探讨[J]. 上海环境科学, 2001, 20(2):71-74.[DAI X L, SUN C. The characteristics of heavy mentals distribution and pollution in sediment from Lake Taihu[J]. Shanghai Environmental Sciences, 2001, 20(2):71-74.]
[10] 张燕, 邓西海, 高翔, 等. 用参评因子动态排序法评价环境综合质量[J]. 长江流域资源与环境, 2006, 15(1):120-124.[ZHANG Y, DENG X Y, GAO X, et al. Evaluation of environmental comprehensive quality by improved analytical hierarchy process method[J]. Resources and Environment in the Yangtze Basin, 2006, 15(1):120-124.]
[11] TAYLOR J G, RYDER S D. Use of the Delphi method in resolving complex water resources issues[J]. JAWRA Journal of the American Water Resources Association, 2003, 39(1):183-189.
[12] SAATY T L. The analytical hierarchy process[M]. New York:McGraw-Hill, 1980.
[1] 王秀, 王振祥, 潘宝, 周春财, 刘桂建. 南淝河表层水中重金属空间分布、污染评价及来源[J]. 长江流域资源与环境, 2017, 26(02): 297-303.
[2] 张钊, 李占海, 张国安, 王智罡, 姚俊. 长江口南槽中段枯季水沙输运特征研究[J]. 长江流域资源与环境, 2016, 25(12): 1832-1841.
[3] 张俊勇, 赵德招. 长江口南港北槽河床底质时空分布特征分析[J]. 长江流域资源与环境, 2016, 25(10): 1520-1527.
[4] 闫思宇, 王景燕, 龚伟, 罗建跃, 苏黎明, 舒正悦, 赵昌平, 蔡煜. 川南山地林分变化对土壤物理性质和抗蚀性的影响[J]. 长江流域资源与环境, 2016, 25(07): 1112-1120.
[5] 朱强, 杨世伦, 孟翊, 杨海飞, 吴创收, 史本伟. 近期长江口南港河槽沉积地貌变异及其可能原因[J]. 长江流域资源与环境, 2016, 25(04): 560-566.
[6] 张萌, 祝国荣, 周慜, 李惠民, 陆友伟, 刘足根. 仙女湖富营养化特征与水环境容量核算[J]. 长江流域资源与环境, 2015, 24(08): 1395-1404.
[7] 龚艳冰, 刘高峰, 冯兰萍, 张继国, 胡娜. 江苏省水资源短缺风险的相似云评价方法研究[J]. 长江流域资源与环境, 2015, 24(06): 931-936.
[8] 栾青杉, 孙军. 2005年秋季长江口及其邻近水域浮游植物群集[J]. 长江流域资源与环境, 2010, 19(2): 202-.
[9] 张涛, 庄平, 章龙珍, 刘健, 王云龙, 侯俊利, 刘鉴毅, 冯广朋, 赵峰, 黄晓荣, 闫文罡. 长江口中华鲟自然保护区及临近水域鱼类种类组成现状[J]. 长江流域资源与环境, 2010, 19(04): 370-.
[10] 朱天明, 杨桂山, 苏伟忠, 李峻峰. 兴化市小城镇土地集约利用综合评价研究[J]. 长江流域资源与环境, 2010, 19(01): 24-.
[11] 吴佳鹏 陈凯麒. 基于灰色模糊理论的流域水电规划环境影响综合评价[J]. 长江流域资源与环境, 2009, 18(3): 281-285.
[12] 陈沈良,严肃庄,李玉中. 长江口及其邻近海域表层沉积物分布特征[J]. 长江流域资源与环境, 2009, 18(2): 152-.
[13] 赵 健, 毕春娟, 陈振楼. 长江口潮滩沉积物中活性重金属的空间分异及控制机制[J]. 长江流域资源与环境, 2009, 18(11): 1020-.
[14] 黄强,张泽中,李群,王义民,齐青青. 河流生态用水综合评价[J]. 长江流域资源与环境, 2008, 17(6): 939-939.
[15] 金晓斌,易理强,王慎敏,周寅康. 基于协调发展视角的区域发展差异研究[J]. 长江流域资源与环境, 2008, 17(4): 511-511.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[5] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[9] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .