长江流域资源与环境 >> 2016, Vol. 25 >> Issue (Z1): 9-16.doi: 10.11870/cjlyzyyhj2016Z1002

• 自然资源 • 上一篇    下一篇

2000~2013年鄱阳湖流域蒸散量时空变化

朱婧瑄1,2, 齐述华1,2,3, 刘贵花1,3, 王点2, 熊梦雅2   

  1. 1. 江西师范大学鄱阳湖湿地与流域研究教育部重点实验室, 江西 南昌 330022;
    2. 江西师范大学地理与环境学院, 江西 南昌 330022;
    3. 江西省鄱阳湖流域综合治理与资源利用重点实验室, 江西 南昌 330022
  • 收稿日期:2015-07-23 修回日期:2015-09-28 出版日期:2016-11-26
  • 通讯作者: 齐述华,E-mail:qishuhua11@163.com E-mail:qishuhua11@163.com
  • 作者简介:朱婧瑄(1991~),女,硕士研究生,主要从事水文水资源研究.E-mail:zhujingxuan11@163.com
  • 基金资助:
    国家自然科学基金项目(41261069);江西省重大生态安全问题监控协同创新中心资助项目(JXS-EW-00);江西省教育厅科学技术研究重点项目(14241)

SPATIOTEMPORAL VARIATION OF TERRESTRIAL EVAPOTRANSPIRATION IN POYANG LAKE WATERSHED FROM 2001 TO 2013

ZHU Jing-xuan1,2, QI Shu-hua1,2,3, LIU Gui-hua1,3, WANG Dian2, XIONG Meng-ya2   

  1. 1. Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China;
    2. School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China;
    3. Jiangxi Provincial Key Laboratory of Poyang Lake Comprehensive Management and Resources Exploitation, Nanchang 330022, China
  • Received:2015-07-23 Revised:2015-09-28 Online:2016-11-26
  • Supported by:
    National Natural Science Fundation of China,(41261069);Collaborative Innovation Center for Major Ecological Security Issues of Jiangxi Province and Monitoring Implementation,(JXS-EW-00);Key project from Educational Department of Jiangxi province(14241)

摘要: 蒸散是陆地表面水分循环的重要过程,是研究流域水资源、水循环等领域的重要参数。以鄱阳湖流域为研究对象,利用鄱阳湖流域5个主要子流域水文控制站监测流量资料和气象站监测降水资料,根据水量平衡原理计算各子流域年度蒸散,验证MODIS蒸散数据产品(ETMOD),并分析2000~2013年鄱阳湖流域蒸散时空变化状况和土地利用变化对蒸散量的影响。研究结果表明:(1)ETMOD具有较高的精度,年蒸散量的平均误差为165.9 mm,平均相对误差为9.78%;(2)2000~2013年鄱阳湖流域的年蒸散变化范围875.4~912.2 mm;鄱阳湖流域总蒸散量呈先增加后减少的“几”字形季节变化特征;(3)从蒸散量与地形特征的关系看,鄱阳湖平原区蒸散量低,周边的山地丘陵区较高;各子流域的蒸散量表现为:赣江流域 > 抚河流域 > 信江流域 > 修水流域 > 饶河流域;(4)土地利用方式对蒸散量有显著的影响,各土地利用类型的平均蒸散量表现为:林地 > 农田 > 草地 > 未利用地。

关键词: 蒸散, MODIS数据产品, 鄱阳湖流域

Abstract: Evapotranspiration (ET) is an important process of water cycle over land surfaces. ET is also a crucial parameter in the fields of water resources, water recycling and other fields. In this paper, water discharge from five main tributaries and precipitation from 80 meteorological stations in Poyang Lake watershed were used to verify the MODIS evapotranspiration data products (ETMOD) during 2000-2013 according to the principle of water balance. The spatiotemporal pattern of ET in the Poyang watershed was analyzed. The results showed that (1) the sum of ETMOD and water discharge is closed to precipitation for every sub-watershed in the Poyang Watershed. The average absolute error of annual ET was about 166 mm, the average relative error was about 10%. It means that ETMOD can be used reliably. (2) In addition to water bodies and building land, the annual ET changed from 875.4 mm to 912.2 mm during 2000-2013. The ascent happened in 2003, 2012 and 2013, which exceeded the average ET value by 21.36 mm, 16.93 mm and 14.86 mm respectively. The seasonal variation characteristics of the ET in the Poyang watershed increased during spring to summer and then deceased during autumn to winter. (3) The annual ET is lower for the alluvial plain around the Poyang Lake and higher for the mountainous region that is mainly covered by forest. ET was higher in the Ganjiang sub-watershed than the others, which was attributed to the high forest cover. (4) ET is affected by land use significantly, the average ET for every land use type was ordered as woodland > farmland > grassland > unused land.

Key words: evapotranspiration, MODIS product, Poyang Lake watershed

中图分类号: 

  • P426.2
[1] BROWN K W, ROSENBERG H T. A resistance model to predict evapotranspiration and its application to a sugar Beet field[J]. Agronomy Journal, 1973, 65(3):341-347.
[2] ROERINK G J, SU Z, MENENTI M. S-SEBI:a simple remote sensing algorithm to estimate the surface energy balance[J]. Physics Chemistry of the Earth, Part B:Hydrology, Oceans and Atmosphere, 2000, 25(2):147-157.
[3] BASTIAANSSEN W G, MENENTI M, FEDDES R A, et al. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation[J]. Journal of Hydrology, 1998, 212-213:198-212.
[4] SU Z, JACOBS C. Advanced earth observation-land surface climate[R]. Netherlands:Publications of National Remote Sensing Board, 2001:91-108.
[5] SU Z. The surface energy balance system (SEBS) for estimation of turbulent heat fluexes[J]. Hydrology and Earth System Sciences, 2002, 6(1):85-100.
[6] SHUTTLEWORTH W J, WALLACE J S. Evaporation from sparse crops-an energy combination theory[J]. Quarterly Journal of the Royal Meteorological Society, 1985, 111(469):839-855.
[7] 张荣华, 杜君平, 孙睿. 区域蒸散发遥感估算方法及验证综述[J]. 地理科学进展, 2012, 27(12):1295-1307.[ZHANG R H, DU J P, SUN R. Review of estimation and validation of regional evapotranspiration based on remote sensing[J]. Advances in Earth Science, 2012, 27(12):1295-1307.]
[8] MU Q Z, HEINSCH F A, ZHAO M S, et al. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data[J]. Remote Sensing of Environment, 2007, 111(4):519-536.
[9] MU Q Z, ZHAO M S, RUNNING S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115(8):1781-1800.
[10] 孙志刚, 王勤学, 欧阳竹, 等. MODIS水汽通量估算方法在华北平原农田的适应性验证[J]. 地理学报, 2004, 59(1):49-55.[SUN Z G, WANG Q X, OUYANG Z, et al. Validation of the feasibility of MOD16 algorithm for estimating crop field vapor flux in North China plain[J]. Acta Geographica Sinica, 2004, 59(1):49-55.]
[11] 吴桂平, 刘元波, 赵晓松, 等. 基于MOD16产品的鄱阳湖流域地表蒸散量时空分布特征[J]. 地理研究, 2013, 32(4):617-627.[WU G P, LIU Y B, ZHAO X S, et al. Spatio-temporal variations of evapotranspiration in Poyang Lake Basin using MOD16 products[J]. Geographical Research, 2013, 32(4):617-627.]
[12] 贺添, 邵全琴. 基于MOD16产品的我国2001-2010年蒸散发时空格局变化分析[J]. 地球信息科学学报, 2014, 16(6):979-988.[HE T, SHAO Q Q. Spatial-temporal variation of terrestrial evapotranspiration in China from 2001 to 2010 using MOD16 products[J]. Journal of Geo-Information Science, 2014, 16(6):979-988.]
[13] 范建忠, 李登科, 高茂盛. 基于MOD16的陕西省蒸散量时空分布特征[J]. 生态环境学报, 2014, 23(9):1536-1543.[FAN J Z, LI D K, GAO M S. Spatio-temporal variations of evapotranspiration in Shaanxi Province using MOD16 products[J]. Ecology and Environment Sciences, 2014, 23(9):1536-1543.]
[14] SHI Y, JIANG T, WANG J, et al. Yangtze floods observations and scenarios[M]//JIANG T, KING L, GEMMER M, et al. Climate Change and Yangtze Floods. Beijing:Science Press, 2004:182-202.
[15] 赵晓松, 刘元波, 吴桂平. 基于遥感的鄱阳湖湖区蒸散特征及环境要素影响[J]. 湖泊科学, 2013, 25(3):428-436.[ZHAO X S, LIU Y B, WU G P. A remote-sensing-based study on evapotranspiration and the environmental factors over the Lake Poyang region[J]. Journal of Lake Sciences, 2013, 25(3):428-436.]
[16] 赵晓松, 刘元波, 吴桂平. 基于遥感的2000~2009年鄱阳湖流域蒸散特征及影响因子研究[J]. 长江流域资源与环境, 2013, 22(3):369-378.[ZHAO X S, LIU Y B, WU G P. A satellite-based study on spatiotemporal variation in evapotranspiration and its controlling factors over the Poyang Lake basin of China during 2000-2009[J]. Resources and Environment in the Yangtze Basin, 2013, 22(3):369-378.]
[17] 张秀平, 许小华, 雷声, 等. 基于遥感技术的鄱阳湖湿地蒸散发估算研究[J]. 人民长江, 2014, 45(1):28-31, 76.[ZHANG X P, XU X H, LEI S, et al. Study on evapotranspiration of Poyang Lake wetland by remote sensing technology[J]. Yangtze River, 2014, 45(1):28-31, 76.]
[18] 王晓鸿, 鄢帮有, 吴国琛. 山江湖工程[M]. 北京:科学出版社, 2006.[WANG X H, YAN B Y, WU G C. Program of Mountain-River-Lake[M]. Beijing:Science Press, 2006.]
[19] 汪权方, 李家永, 陈百明. 基于地表覆盖物光谱特征的土地覆被分类系统——以鄱阳湖流域为例[J]. 地理学报, 2006, 61(4):359-368.[WANG Q F, LI J Y, CHEN B M. Land cover classification system based on spectrum in Poyang Lake Basin[J]. Acta Geographica Sinica, 2006, 61(4):359-368.]
[20] 郭华, 姜彤, 王国杰, 等. 1961-2003年间鄱阳湖流域气候变化趋势及突变分析[J]. 湖泊科学, 2006, 18(5):443-451.[GUO H, JIANG T, WANG G J. Observed trends and jumps of climate change over Lake Poyang Basin, China:1961-2003[J]. Journal of Lake Sciences, 2006, 18(5):443-451.]
[21] 殷剑敏, 王怀清, 占明锦, 等. 过去50年鄱阳湖流域气候变化规律分析[C]//中国科学技术协会, 江苏省科学技术协会. 首届中国湖泊论坛论文集. 北京:东南大学出版社, 2011:9.
[22] 吴炳方, 闫娜娜, 蒋礼平, 等. 流域耗水平衡方法与应用[J]. 遥感学报, 2011, 15(2):281-297.[WU B F, YAN N N, JIANG L P, et al. A method of water consumption balance and application[J]. Journal of Remote Sensing, 2011, 15(2):281-297.]
[23] KALMA J D, MCVICAR T R, MCCABE M F. Estimating land surface evaporation:a review of methods using remotely sensed surface temperature data[J]. Surveys in Geophysics, 2008, 29(4/5):421-469.
[24] LI Z L, TANG R L, WANG Z M, et al. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data[J]. Sensors, 2009, 9(5):3801-3853.
[1] 郎登潇, 师嘉褀, 郑江坤, 廖峰, 马星, 王文武, 陈怡帆. 近52a西南地区潜在蒸散发时空变化特征[J]. 长江流域资源与环境, 2017, 26(06): 945-954.
[2] 赵平伟, 郭萍, 李立印, 舒珺. SPEI及SPI指数在滇西南地区干旱演变中的对比分析[J]. 长江流域资源与环境, 2017, 26(01): 142-149.
[3] 彭俊. 1950年以来鄱阳湖流域水沙变化规律及影响因素分析[J]. 长江流域资源与环境, 2015, 24(10): 1751-1761.
[4] 费明哲, 张增信, 原立峰, 王言鑫, 周洋. TRMM降水产品在鄱阳湖流域的精度评价[J]. 长江流域资源与环境, 2015, 24(08): 1322-1330.
[5] 吴志杰, 何云玲. 基于SPEI的云南中部区域干旱时空变化特征分析[J]. 长江流域资源与环境, 2015, 24(07): 1238-1245.
[6] 胡小飞, 傅春. 鄱阳湖流域排污权初始分配模式的比较研究[J]. 长江流域资源与环境, 2015, 24(05): 839-845.
[7] 刘健, 张奇, 许崇育, 翟建青, 靳晓莉. 近50年鄱阳湖流域实际蒸发量的变化及影响因素[J]. 长江流域资源与环境, 2010, 19(2): 139-.
[8] 汪权方,李家永. 基于时序NDVI数据的鄱阳湖流域常绿覆被季节性变化特征[J]. 长江流域资源与环境, 2008, 17(6): 866-866.
[9] 郭 华,,殷国强5|姜 彤. 未来50年鄱阳湖流域气候变化预估[J]. 长江流域资源与环境, 2008, 17(1): 73-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈 勇,陈国阶,杨定国. 岷江上游聚落分布规律及其生态特征——以四川理县为例[J]. 长江流域资源与环境, 2004, 13(1): 72 -77 .
[2] 陈正洪,万素琴,毛以伟. 三峡库区复杂地形下的降雨时空分布特点分析[J]. 长江流域资源与环境, 2005, 14(5): 623 -627 .
[3] 张磊,董立新,吴炳方,周万村. 三峡水库建设前后库区10年土地覆盖变化[J]. 长江流域资源与环境, 2007, 16(1): 107 -112 .
[4] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[5] 禹 娜,陈立侨,赵泉鸿. 太湖介形类动物丰度与生物量[J]. 长江流域资源与环境, 2008, 17(4): 546 .
[6] 孔令强. 水电工程农村移民入股安置模式初探[J]. 长江流域资源与环境, 2008, 17(2): 185 .
[7] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[8] 于苏俊,张 继,夏永秋. 基于遗传算法的可持续土地利用动态规划[J]. 长江流域资源与环境, 2006, 15(2): 180 -184 .
[9] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[10] 杨丽霞,杨桂山,苑韶峰. 数学模型在人口预测中的应用——以江苏省为例[J]. 长江流域资源与环境, 2006, 15(3): 287 -291 .