长江流域资源与环境 >> 2015, Vol. 24 >> Issue (08): 1322-1330.doi: 10.11870/cjlyzyyhj201508009

• 自然资源 • 上一篇    下一篇

TRMM降水产品在鄱阳湖流域的精度评价

费明哲1,2, 张增信3,4, 原立峰1,2, 王言鑫3, 周洋3   

  1. 1. 南京邮电大学地理与生物信息学院, 江苏 南京 210003;
    2. 中国科学院南京地理与湖泊研究所, 流域地理学 重点实验室, 江苏 南京 210008;
    3. 南京林业大学江苏省林业生态工程重点实验室, 江苏 南京 210037;
    4. 国家海洋局第二海洋研究所卫星海洋环境动力学国家重点实验室, 浙江 杭州 310012
  • 收稿日期:2014-10-20 修回日期:2014-11-11 出版日期:2015-08-20
  • 作者简介:费明哲(1989~),硕士研究生,主要从事水文学与地理信息系统应用研究.
  • 基金资助:
    国家重点基础研究发展计划(2012CB417006);国家自然科学基金(41001158、41171020);卫星海洋环境动力学国家重点实验室开放基金

ACCURACY ASSESSMENT FOR TRMM IN THE POYANG LAKE BASIN

FEI Ming-zhe1,2, ZHANG Zeng-xin3,4, YUAN Li-feng1,2, WANG Yan-xin3, ZHOU Yang3   

  1. 1. College of Geography & Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
    2. Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
    3. Jiangsu Key Laboratory of Forestry Ecological Engineering, Nanjing Forestry University, Nanjing 210037, China;
    4. State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou 310012, China
  • Received:2014-10-20 Revised:2014-11-11 Online:2015-08-20
  • Contact: 张增信 E-mail:nfuzhang@163.com;原立峰 E-mail:lfyuan@niglas.ac.cn E-mail:nfuzhang@163.com;lfyuan@niglas.ac.cn

摘要: 为对比TRMM 3B42 V6和V7两种版本的降水产品在鄱阳湖流域的估算精度,了解TRMM卫星资料在中国南方湿润区的应用前景,利用2003~2010年V6和V7在鄱阳湖流域的降水产品以及同期实测降水数据,从不同时间和空间尺度对比二者在鄱阳湖流域降水的估算精度。结果表明:(1)在年降水总量上,V6和V7的降水估算与实测降水差别不大,而在季和月降水尺度上,V6和V7的估算精度开始有所下降,但V7比V6结果要好一些,V7与实测降水的相关系数比V6与实测降水的相关系数高出0.1以上;(2)空间分布来看,V6和V7都能刻画出鄱阳湖流域降水自西南向东北方向递增的空间格局,但在修水流域和赣南地区,V6与实测降水偏差较大,而V7在这两个区域的降水估算精度有较大改善。总的来说,在鄱阳湖流域,V7估算的降水精度比V6有较大的提升。

关键词: 鄱阳湖流域, TRMM 3B42, V6, V7, 降水, 精度评价

Abstract: Precipitation measurement offers fundamental information in understanding the energy flow and water cycle, which is also crucial to hydrology and water resources management. However, the precipitation measurement varies in space and time, and its accuracy becomes the toughest and vital problem. This study is carried out to estimate the precipitation accuracy of the TRMM 3B42 V6 and V7,the two versions of products in the Poyang Lake Basin, and to find out the unique advantages of V7 compared to V6, and address the prospect of application of TRMM satellite data in humid southern China. The precipitation products of V6 and V7 are picked up to evaluate accuracy with the 2003~2010 observation data andh employs statistics knowledge to quantitative analyse estimation accuracy. The results show: 1) At the year scale, both versions generally match well the actual annual precipitation in all basins. The bias of products are under 10%, especially in Raohe and Fuhe basins, where the TRMM and observed precipitation are almost identical, with the bias under 5%. However, the accuracy of V6 and V7 turns to degrade with finer temporal scale, which is more apparent in V6. The correlation coefficients of V7 is above 0.7 seasonally and monthly, which is about 0.1 higher than V6; it turns out to prove that the correlation between V7 and observed is better. What's more, the accuracy assessment is higher in the wet and warm season such as summer and autumn, but it turns to reduce with the precipitation and temperature drops, the V6 product overestimates the precipitation in summer and underestimates the precipitation in winter, which does not appear in V7 product; daily, the fitted curve of V7 matches actual precipitation curve better than V6, and V7 has better qualities in prediction of precipitation grade. 2) Both the V6 and V7 satellite data shows a precipitation pattern that is higher in the South and West and lower in the North and East in Poyang Lake Basin, which is consistent with the real situation of the precipitation for the whole eight years. The differences between TRMM and observed precipitation became large in Xiushui Basin and Poyang lake,, probably caused by terrain and the large water area; what's more, the month data can precisely reflect the changing trends of precipitation in the five major sub basins, the performance of V7 is better with fewer bias; but the bias of the V6 and V7 are both larger in Xiushui Basin than other Basins, and the correlation coefficient in the part of Gannan area is relatively low. It has been a great improvement for V7 product in total Poyang Lake Basin, especially in those two areas, but the problem still persists. The complex and high terrain of those two areas can interfere the satellite signal, which reduces the accuracy of observation. Overall, V7 product has a greater improvement than V6 product in the estimation accuracy of precipitation spatially and temporally in Poyang Lake basin, which has higher accuracy in humid southern China such as the Poyang Lake basin. V7 provides better understand in the complex hydrological process and a promising future.

Key words: Poyang Lake Basin, TRMM 3B42, V6, V7, rainfall, accuracy analysis

中图分类号: 

  • P426.6
[1] CHEN S, HONG Y. Similarity and difference of the two successive V6 and V7 TRMM multi-satellite precipitation analysis (TMPA) performance over China[J]. Journal of Geophysical Research D: Atmospheres, 2013, 118(23):13060-130740.
[2] 吴雪娇, 杨梅学, 吴洪波,等. TRMM多卫星降水数据在黑河流域的验证与应用[J]. 冰川冻土, 2013, 35(2): 310-319.
[3] ZENG H W, LI L J, LI J Y, et al. The evaluation of TRMM multisatellite precipitation analysis (TMPA) in drought monitoring in the Lancang river basin[J]. Journal of Geographical Sciences, 2012, 22(2):273-282.
[4] 刘俊峰, 陈仁升, 韩春坛,等. 多卫星遥感降水数据精度评价[J]. 水科学进展, 2010, 21(3): 343-348.
[5] 袁 飞, 赵晶晶, 任立良, 江善虎,等, TRMM多卫星测雨数据在赣江上游径流模拟中的应用[J]. 天津大学学报(自然科学与工程技术版), 2013, 46(7): 611-616.
[6] 李相虎, 张 奇, 邵 敏,等. 基于TRMM数据的鄱阳湖流域降雨时空分布特征及其精度评价[J]. 地理科学进展, 2012, 31(9): 1164-1170.
[7] LI X H, ZHANG Q, et al. Dry/wet conditions monitoring based on TRMM rainfall data and its reliability validation over Poyang lake basin, China[J], Water, 2013, 5: 1848-1864.
[8] LI X H, ZHANG Q. Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang lake basin[J], Journal of Hydrology, 2012, 28(38): 426-427.
[9] LI X H, ZHANG Q, XU C Y, et al. Assessing the performance of satellite-based precipitation products and its dependence on topography over Poyang Lake basin[J], Theor Appl Climatol, 2014, 115:713-729;
[10] OCHOA A, PINEDA L, CRESPO P,et al. Evaluation of TRMM 3B42 precipitation estimates and WRF retrospective precipitation simulation over the Pacific-Andean region of Ecuador and Peru[J]. Hydrol Earth Syst Sci, 2014, 18: 3179-3193.
[11] SATYA P, MAHESH C,GAIROLA RM. Comparison of TRMM multi-satellite precipitation analysis (TMPA)-3B43 version 6 and 7 products with rain gauge data from ocean buoys[J].Remote Sensing Letters, 2013, 4(7): 677-685.
[12] LIU J Z, ZHU A X, et al. Evaluation of TRMM 3B42 precipitation product using rain gauge data in Meichuan watershed, Poyang lake basin, China[J]. Journal of Resources and Ecology, 2012, 3(4):359-366.
[13] 李景刚, 黄诗峰, 李纪人,等. TRMM数据在区域同期降水趋势特征分析中的应用[J]. 中国水利水电科学研究院学报, 2012, 10(2): 98-104.
[14] 毛江玉, 吴国雄. 基于TRMM卫星资料揭示的亚洲季风区夏季降水日变化[J]. 中国科学:地球科学, 2012, 42(4): 564-576.
[15] 李景刚, 黄诗峰. 基于TRMM数据的汉江流域1998年~2010年降水变化特征[J]. 南水北调与水利科技, 2011, 9(6): 48-53.
[16] SCHEEL M L M, ROHRER M, HUGGEL C,et al. Evaluation of TRMM multi-satellite precipitation analysis (TMPA) performance in the central Andes region and its dependency on spatial and temporal resolution[J]. Hydrol. Earth Syst. Sci. Discuss. 2010, 7: 8545-8586.
[17] 金斌松, 聂 明,李 琴,等. 鄱阳湖流域基本特征、面临挑战和关键科学问题[J]. 长江流域资源与环境, 2012, 23(3): 268-275.
[18] 赵晶晶, 袁 飞, 江善虎,等. TMPA卫星降水数据质量评估及水文过程模拟[J]. 水电能源科学, 2012, 30(12): 10-12.
[19] ZHANG Z X, XU C Y. Singh spatial and temporal variation of precipitation in Sudan and their possible causes during 1948-2005[J]. Stoch Environ Res Risk Assess, 2012, 26(3):429-441.
[20] 骆 三, 苗峻峰, 牛 涛,等. TRMM测雨产品3B42与台站资料在中国区域的对比分析[J]. 气象, 2011, 37(9): 1081-1090.
[21] EBERT E. Satellite vs. model rainfall –Which one to use? Proceedings of 5th international scientific conference on the global energy and water cycle[C]. Costa Mesa, California, USA: Global Energy and Water Cycle Experiment & World Climate Research & United States National Oceanic and Atmospheric administration & Office of Global Programs, 2005, June: 20-24.
[22] 李永涛. TRMM卫星测雨产品精度检验及其应用[D]. 南京:河海大学硕士学位论文, 2008: 55-59.
[23] 杨 扬, 张建云,戚建国,等. 雷达测雨及其在水文中应用的回顾与展望[J]. 水科学进展, 2000, 11(1): 92-98.
[24] EMAD H, AMY H, ROBERT F A. Evaluation of TMPA satellite-based research and real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana[J], USA Atmospheric Research, 2009, 94:373-388.
[1] 周毅, 吴华武, 贺斌, 李静, 段伟利, 王建锋, 童世贤. 长江水δ18O和δD时空变化特征及其影响因素分析[J]. 长江流域资源与环境, 2017, 26(05): 678-686.
[2] 陈红. 长江中下游夏季极端降水事件频次的统计降尺度模拟与预估[J]. 长江流域资源与环境, 2017, 26(05): 771-777.
[3] 刘俸霞, 王艳君, 赵晶, 陈雪, 姜彤. 全球升温1.5℃与2.0℃情景下长江中下游地区极端降水的变化特征[J]. 长江流域资源与环境, 2017, 26(05): 778-788.
[4] 潘欣, 尹义星, 王小军. 1960~2010年长江流域极端降水的时空演变及未来趋势[J]. 长江流域资源与环境, 2017, 26(03): 436-444.
[5] 赵平伟, 郭萍, 李立印, 舒珺. SPEI及SPI指数在滇西南地区干旱演变中的对比分析[J]. 长江流域资源与环境, 2017, 26(01): 142-149.
[6] 朱婧瑄, 齐述华, 刘贵花, 王点, 熊梦雅. 2000~2013年鄱阳湖流域蒸散量时空变化[J]. 长江流域资源与环境, 2016, 25(Z1): 9-16.
[7] 徐明, 王晓芳, 高琦, 汪小康, 赖安伟. 基于TRMM卫星资料揭示的长江流域梅雨季节降水日变化[J]. 长江流域资源与环境, 2016, 25(12): 1934-1944.
[8] 黄钰瀚, 张增信, 费明哲, 金秋. TRMM 3B42卫星降水数据在赣江流域径流模拟中的应用[J]. 长江流域资源与环境, 2016, 25(10): 1618-1625.
[9] 龚艳冰, 戴靓靓, 胡娜, 刘高峰, 张继国. 基于云推理和模糊逻辑关系模型的干旱等级预测方法研究[J]. 长江流域资源与环境, 2016, 25(08): 1273-1278.
[10] 陈阿娇, 贺新光, 秦建新, 章新平. 长江流域近51a来日降水时空变异的多尺度特征[J]. 长江流域资源与环境, 2016, 25(05): 794-803.
[11] 翟菁, 刘慧娟, 黄勇, 邱学兴, 霍彦峰. 安徽省热对流短时强降水的判别与特征分析[J]. 长江流域资源与环境, 2016, 25(05): 837-844.
[12] 丁文荣. 环洱海地区气候变化特征研究[J]. 长江流域资源与环境, 2016, 25(04): 599-605.
[13] 唐宝琪, 延军平, 李双双, 刘永林. 近55年来华东地区旱涝时空变化特征[J]. 长江流域资源与环境, 2016, 25(03): 497-505.
[14] 彭俊翔, 伍永年, 胡维平, 邓建才. 长荡湖近61a降水量演化特征[J]. 长江流域资源与环境, 2016, 25(02): 292-299.
[15] 杨旭, 刘志武, 李波. 多源降水数据在长江上游流域比较研究[J]. 长江流域资源与环境, 2016, 25(01): 131-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈 勇,陈国阶,杨定国. 岷江上游聚落分布规律及其生态特征——以四川理县为例[J]. 长江流域资源与环境, 2004, 13(1): 72 -77 .
[2] 陈正洪,万素琴,毛以伟. 三峡库区复杂地形下的降雨时空分布特点分析[J]. 长江流域资源与环境, 2005, 14(5): 623 -627 .
[3] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[4] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[5] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[9] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .
[10] 陈 静, 杨 凯, 张 勇, 赵 军. 灰色协调度模型在产业用水系统分析中的应用[J]. 长江流域资源与环境, 2008, 17(5): 688 .