长江流域资源与环境 >> 2019, Vol. 28 >> Issue (06): 1460-1469.doi: 10.11870/cjlyzyyhj201906020

• 生态环境 • 上一篇    下一篇

2000~2015年江汉平原区域植被NPP时空特征及其对气候变化的响应

孔春芳1,2,岳永财1,徐凯1,2*   

  1. (1.中国地质大学(武汉)计算机学院,湖北 武汉 430074;
    2.智能地学信息处理湖北省重点实验室,湖北 武汉 430074)
  • 出版日期:2019-06-20 发布日期:2019-06-20

Spatial-temporal Variation of Vegetation Net Primary Productivity and Its Response to Climate Change in Jianghan Plain from 2000 to 2015

KONG Chun-fang1, 2, YUE Yong-cai1, XU Kai1, 2   

  1. (1. School of Computer, China University of Geosciences, Wuhan 430074, China; 
    2. Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430074, China)
  • Online:2019-06-20 Published:2019-06-20

摘要: 植被NPP对气候变化的响应是全球变化与陆地生态系统碳循环研究的重要核心内容之一。利用CASA模型估算了2000~2015年江汉平原植被NPP,并利用线性回归与逐像元相关性分析方法定量研究了江汉平原植被NPP的时空变化特征及其与气候因素的相关性。结果表明:(1)16年来江汉平原植被NPP的年总量在25.43~29.76 TgC之间,呈波动增加趋势;(2)江汉平原NPP的空间分布格局具有明显的不均匀特征,形成一系列的高值中心和低值中心,符合“丘陵-平原-河流-城市”的衰减趋势;(3)江汉平原NPP与年降水量、年均温的相关系数分别为0.183 7和0.498 5;经显著性检验可知,江汉平原NPP的产量与年降水量相关性较弱,而与年均温则呈较强的正相关关系;(4)植被NPP与年降水量、年均温呈正相关的像元面积分别占总面积的69.19%和83.41%,主要分布在江汉平原腹部的农耕区域,说明江汉平原农耕区NPP的产量对年降水量与年均温的依赖性较强。

Abstract: Response of vegetation NPP to climate change is one of the key issues in the study of global change and terrestrial ecosystem carbon cycle. In this paper, vegetation NPP was estimated by CASA model in Jianghan Plain from 2000 to 2015, and the spatial-temporal variation characteristics of vegetation NPP and its relativities with climatic factors were quantitatively studied by linear regression and pixel correlation analysis. Results are summarized as follows: (1) Total annual NPP ranged from 25.43 to 29.76 TgC in Jianghan Plain from 2000 to 2015, and showing an increasing trend of fluctuation. (2) The spatial distribution pattern of NPP in Jianghan Plain is obviously uneven, forming a series of high value and low value centers, which was consistent with the attenuation trend of “hills-plain-river-city”. (3) The correlation coefficients between NPP and annual precipitation, and annual mean temperature were 0.183 7 and 0.498 5, respectively; and the significant test of correlation coefficient indicated that the yield of NPP in Jianghan Plain has a weak correlation with annual precipitation, but a positive correlation with annual mean temperature. (4) The area with positive correlation between NPP and annual precipitation and annual mean temperature accounted for 69.19% and 83.41% of the total area, respectively, mainly distributed in the agricultural region in the abdomen of Jianghan Plain, which indicated that the yield of NPP in the agricultural region of Jianghan Plain was strongly dependent on the annual precipitation and annual mean temperature.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段学花 王兆印 余国安. 以底栖动物为指示物种对长江流域水生态进行评价[J]. 长江流域资源与环境, 2009, 18(3): 241 -247 .
[2] 许妍, 高俊峰, 黄佳聪. 太湖湿地生态系统服务功能价值评估[J]. 长江流域资源与环境, 2010, 19(06): 646 .
[3] 张天宇, 李永华, 程炳岩, 孙杰, 许崇海. 三峡库区汛期极端降水非均匀性特征[J]. 长江流域资源与环境, 2011, 20(3): 298 .
[4] 林明水|谢红彬. 基于经济联系强度的海峡西岸经济区空间格局分析[J]. 长江流域资源与环境, 2011, 20(07): 837 .
[5] 许朗|黄莺|刘爱军. 基于主成分分析的江苏省水资源承载力研究[J]. 长江流域资源与环境, 2011, 20(12): 1468 .
[6] 陶 敏. 我国环境治理投资效率评价及其关键影响因素[J]. 长江流域资源与环境, 2012, 21(01): 111 .
[7] 姚芳芳 |冯丽丽 |杨颂宇 |王希. 亚热带常见树种幼苗对酸雨的生理响应及敏感性综合评判[J]. 长江流域资源与环境, 2013, 22(02): 200 .
[8] 张亚男, 甘义群, 李小倩, 刘运德, 于凯, 张彬. 2013年长江丰水期河水化学特征及控制因素[J]. 长江流域资源与环境, 2016, 25(04): 645 -654 .
[9] 吴殿鸣, 邵大伟. 基于最佳尺度的城市扩张特征研究——以苏州中心城区为例[J]. 长江流域资源与环境, 2018, 27(09): 1937 -1946 .
[10] 沈雪, 张露, 张俊飚, 骆兰翎. 稻农低碳生产行为影响因素与引导策略——基于人际行为改进理论的多组比较分析[J]. 长江流域资源与环境, 2018, 27(09): 2042 -2052 .